On ${ }^{\beta}{ }_{-} \rho_{\text {-Continuity }}$ Where ${ }^{\rho} \in\{\mathrm{L}, \mathrm{M}, \mathrm{R}, \mathrm{S}\}$

M. Priyadarshini, R. Selvi

Abstract

The authors Selvi.R, Thangavelu.P and Anitha.M introduced the concept of ${ }^{\rho}$-continuity between a topological space and a non empty set where $\rho^{\rho} \in\{\mathrm{L}, \mathrm{M}, \mathrm{R}, \mathrm{S}\}[4]$. Navpreet singh Noorie and Rajni Bala[3] introduced the concept of f \# function to characterize the closed, open and continuous functions. In this paper, the concept of $\beta_{-} \rho_{-}$continuity is introduced and its properties are investigated and $\beta_{-} \rho_{\text {-continuity }}$ is further characterized by using $\ddagger \#$ functions. KEYWORDS: Multifunction, Saturated set, $\beta_{-} \rho_{\text {-continuity, }} \beta_{\text {-continuity, }} \beta_{\text {-open, }} \beta_{\text {-closed }}$ and continuity.

1 Introduction:

By a multifunction $\mathrm{F}: \mathrm{X} \rightarrow \mathrm{Y}$, We mean a point to set correspondence from X into Y with $F(x) \neq \phi$ for all $x \in X$. Any function $f: X \rightarrow Y$ induces a multifunction $\mathrm{f}^{-1} \mathrm{Of}: \mathrm{X} \rightarrow \wp(\mathrm{X})$. It also induces another multifunction $\mathrm{fOf}{ }^{-1}: \mathrm{Y} \rightarrow(\mathrm{Y}) \quad$ provided f is surjective. The purpose of this paper is to introduce notions of β-L-Continuity, β - M-Continuity, β - R -Continuity and β-S-Continuity of a function $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ between a topological space and a non empty set. Here we discuss their links with β-open and β-closed sets. Also we establish pasting lemmas for β-Rcontinuous and β-S-continuous functions and obtain some characterizations for β - ρ-continuity. Navpreet singh Noorie and Rajni Bala [3] introduced the concept of $\mathrm{f}^{\#}$ function to characterize the closed, open and continuous functions. The authors [6] characterized ρ-continuity by using $\mathrm{f}^{\#}$ functions. In an analog way β - ρ-continuity is characterized in this paper.

2 Preliminaries:

The following definitions and results that are due to the authors [4] and Navpreet singh Noorie and Rajni Bala [3] will be useful in sequel.

Definition: 2.1

Let $f:(x, \tau) \rightarrow Y$ be a function. Then f is
(i) L-Continuous if $\mathrm{f}^{-1}(\mathrm{f}(\mathrm{A})$) is open in X for every open set A in X . [4]
(ii) M-Continuous if $f^{-1}(\mathrm{f}(\mathrm{A})$) is closed in X for every closed set A in X. [4]

Definition: 2.2

Let $\mathrm{f}: \mathrm{X} \rightarrow(\mathrm{Y}, \sigma)$ be a function. Then f is
(i) R-Continuous if $f(\mathrm{f}-1(\mathrm{~B})$) is open in Y for every open set B in Y. [4]
(ii) S-Continuous if $f(f-1(B))$ is closed in Y for every closed set B in Y. [4]

Definition 2.3:

Let $f: X \rightarrow Y$ be any map and E be any subset of X. then the following hold.
(i) $\mathrm{f}^{\#}(\mathrm{E})=\left\{\mathrm{y} \in \mathrm{Y}: \mathrm{f}^{-1}(\mathrm{y}) \subseteq \mathrm{E}\right\}$;
(ii) $\mathrm{E}^{\#}=\mathrm{f}^{-1}\left(\mathrm{f}^{\#}(\mathrm{E})\right) \cdot[3]$

Lemma 2.4:

Let E be a subset of X and let $f: X \rightarrow Y$ be a function. Then the following hold.
(i) $\mathrm{f}^{\#}(\mathrm{E})=\mathrm{Y} \backslash f(\mathrm{X} \backslash \mathrm{E})$;
(ii) $f(E)=Y \backslash f^{\#}(X \backslash E) .[3]$

Lemma 2.5:

Let E be a subset of X and let $f: X \rightarrow Y$ be a function. Then the following hold.
(i) $\mathrm{f}^{-1}\left(\mathrm{f}^{\#}(\mathrm{E})\right)=\mathrm{X} \backslash \mathrm{f}^{-1}(\mathrm{f}(\mathrm{X} \backslash \mathrm{E})$);
(ii) $f^{-1}(f(E))=X \backslash f^{-1}\left(f^{\#}(X \backslash E)\right)$
. [6]

Lemma 2.6:

Let E be a subset of X and let $f: X \rightarrow Y$ be a function. Then the following hold.
(i) $\mathrm{f}^{\#}(\mathrm{f}-\mathrm{B}(\mathrm{E}))=\mathrm{Y} \backslash \mathrm{f}\left(\mathrm{f}^{-1}(\mathrm{Y} \backslash \mathrm{E})\right)$; (ii) $\mathrm{f}\left(\mathrm{f}^{-1}(\mathrm{E})\right)=\mathrm{Y} \backslash \mathrm{f}^{\#}\left(\mathrm{f}^{-1}(\mathrm{Y} \backslash \mathrm{E})\right)$. [6]

Definition 2.7:

Let $f: X \rightarrow Y, A_{\subseteq} X$ and $B \subseteq Y$. we say that A is f -saturated if $\mathrm{f}^{-1}(\mathrm{f}(\mathrm{A})) \subseteq \mathrm{A}$ and B is f^{-1}-saturated if $\mathrm{f}\left(\mathrm{f}-{ }^{-1}(\mathrm{~B})\right) \subseteq \mathrm{B}$. Equivalently A is f -saturated if and only if $f^{-1}(f(A))=A$, and B is f^{-1}-saturated if and only if $f\left(f^{-1}(B)\right)=B$.

Definition 2.8:

Let A be a subset of a topological space (X, τ). Then A is called
(i) Semi-open if $\mathrm{A} \subseteq \mathrm{cl}(\operatorname{int}(\mathrm{A}))$ and semi-closed if $\operatorname{int}(\mathrm{cl}(\mathrm{A})) \subseteq \mathrm{A} ;[1]$.
(ii) Pre-open if $A \subseteq \operatorname{int}(\mathrm{cl}(\mathrm{A}))$ and pre-closed if $\mathrm{cl}(\operatorname{int}(\mathrm{A})) \subseteq \mathrm{A} ;[2]$.
(iii) α-open if $\mathrm{A}_{\subseteq} \operatorname{int}(\mathrm{cl}(\operatorname{int}(\mathrm{A})))$ and α-closed if cl(int(cl(A))) $\subseteq A ;[7]$.
(iv) semi-pre-open or β-open if $\mathrm{A} \subseteq \operatorname{cl}(\operatorname{int}(\mathrm{cl}(\mathrm{A})))$ and semi-pre-closed or β-closed if $\operatorname{int}(\mathrm{cl}(\operatorname{int}(\mathrm{A}))) \subseteq \mathrm{A}$; [8].

Definition 2.9:

Let $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ be a function. Then f is β-continuous if $\mathrm{f}^{-1}(\mathrm{~B})$ is open in X for every β-open set B in Y. [8]

Definition: 2.10:

Let $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ be a function. Then f is β-open (resp. β-closed) if $\mathrm{f}(\mathrm{A})$ is β-open(resp. β-closed) in Y for every β-open(resp. β-closed) set A in X .

3. $\beta_{-} \rho$-Continuity Where $\rho \in\{\mathbf{L}, \mathbf{M}, \mathbf{R}, \mathbf{S}\}$

Definition: 3.1

Let $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow \mathrm{Y}$ be a function. Then f is
(i) β-L-Continuous if $\mathrm{f}^{-1}(\mathrm{f}(\mathrm{A}))$ is open in X for every β-open set A in X .
(ii) β-M-Continuous if $\mathrm{f}^{-1}(\mathrm{f}(\mathrm{A}))$ is closed in X for every β-closed set A in X .

Definition: 3.2

Let $\mathrm{f}: \mathrm{X} \rightarrow(\mathrm{Y}, \sigma)$ be a function. Then f is
(i) β-R-Continuous if $\mathrm{f}\left(\mathrm{f}^{-1}(\mathrm{~B})\right)$ is open in Y for every β-open set B in Y .
(ii) β-S-Continuous if $\mathrm{f}(\mathrm{f}-1(\mathrm{~B}))$ is closed in Y for every β-closed set B in Y .

Example: 3.3

Let $X=\{a, b, c, d\}$ and $Y=\{1,2,3,4\}$. Let $\tau=\{\Phi, X,\{a\}$, $\{b\},\{a, b\},\{a, b, c\}\}$. Let $f:(X, \tau) \rightarrow Y$ defined by $f(a)=1$, $\mathrm{f}(\mathrm{b})=2, \mathrm{f}(\mathrm{c})=3, \mathrm{f}(\mathrm{d})=4$. Then f is β-L-Continuous and $\beta-\mathrm{M}$ Continuous.

Example: 3.4

Let $X=\{a, b, c, d\}$ and $Y=\{1,2,3,4\}$. Let $\sigma=\{\Phi$, $\mathrm{Y},\{1\},\{2\},\{1,2\},\{1,2,3\}\}$. Let $\mathrm{g}: \mathrm{X} \rightarrow(\mathrm{Y}, \sigma)$ defined by $\mathrm{g}(\mathrm{a})=1, \mathrm{~g}(\mathrm{~b})=2, \mathrm{~g}(\mathrm{c})=3, \mathrm{~g}(\mathrm{~d})=4$. Then g is β-R-Continuous and β-S-Continuous.

Definition: 3.5

Let $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ be a function, Then f is
(i) β-LR-Continuous, if it is both β-L-Continuous and β-R-Continuous.
(ii) β-LS -Continuous, if it is both β-L-Continuous and β-S-Continuous.
(iii) β-MR-Continuous, if it is both β-M-Continuous and β-R-Continuous.
(iv) β-MS-Continuous, if it is both β-M-Continuous and β-S-Continuous.

Theorem: 3.6

(i) Every injective function $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ is β-L-Continuous and β-M-Continuous.
(ii) Every surjective function $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ is β-R-Continuous and β-S-Continuous.
(iii) Any constant function $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma) \quad$ is β-R-Continuous and β-S-Continuous.

Proof:

(i) Let $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ be injective function. Then β-LContinuity and β-M-Continuity follow from the fact that f ${ }^{1}(\mathrm{f}(\mathrm{A}))=\mathrm{A}$. This proves (i).
(ii) Let $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ be surjective function. Since f is surjective, $\mathrm{f}\left(\mathrm{f}^{-1}(\mathrm{~B})\right)=\mathrm{B}$ for every subset B of Y . Then f is both β-R-Continuous and β-S-Continuous. This proves (ii).
(iii)Suppose $f(x)=y_{o}$ for every x in X. Then $f(f-1(B))=Y$ if $y_{o} \in B$ and $f\left(f f^{-1}(B)\right)=\Phi$, if $y_{o} \in Y \backslash B$. This proves (iii).

Corollary: 3.7

If $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ be bijective function then f is β-L-Continuous, β-M-Continuous, β - R -Continuous and β-S-Continuous .

Theorem: 3.8

Let $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$.

(i) If f is L -Continuous (resp. M-Continuous) then it is β-L-Continuous (resp. β-M-Continuous).
(ii) If f is R -Continuous (resp. S-Continuous) then it is β-R-Continuous (resp. β-S-Continuous).

Proof:

(i) Let $\mathrm{A} \subseteq \mathrm{X}$ be β-open (resp. β-closed) in X . Since every β-open (resp. β-closed) set is open (resp. closed) and since f is L-continuous (resp. M-continuous) $\Rightarrow \mathrm{f}^{-1}(\mathrm{f}(\mathrm{A})$) is open (resp. closed) in X . Therefore f is β-L-Continuous (resp. β -M-Continuous).
(ii) Let $\mathrm{B} \subseteq \mathrm{Y}$ be β-open (resp. β-closed) in Y . since every β-open (resp. β-closed) set is open (resp. closed) and since f is R -continuous (resp. S-continuous) $\Rightarrow \mathrm{f}\left(\mathrm{f}^{-1}(\mathrm{~B})\right)$ is open (resp. closed) in Y. Therefore f is β - R -Continuous (resp. β -S-Continuous).

Theorem: 3.9

Let $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow \mathrm{Y}$ be β-L-Continuous. Then $\mathrm{cl}(\operatorname{int}(\mathrm{cl}(\mathrm{A})))$ is f -saturated whenever A is f -saturated and α-closed.

Proof:

Let $\mathrm{A} \subseteq \mathrm{X}$ be f -saturated. Since f is β-L-Continuous $\Rightarrow \mathrm{A}$ is β-open set in $\mathrm{X} \Rightarrow \mathrm{A} \subseteq \operatorname{cl}(\operatorname{int}(\mathrm{cl}(\mathrm{A})))$. And since A is α-closed $\Rightarrow \operatorname{cl}(\operatorname{int}(\mathrm{cl}(\mathrm{A}))) \subseteq \mathrm{A}$. Therefore $\operatorname{cl}(\operatorname{int}(\mathrm{cl}(\mathrm{A})))=\mathrm{A}$. Since A is f-saturated $\Rightarrow \mathrm{f}^{-1}(\mathrm{f}(\mathrm{A}))=\mathrm{A}$. That implies $\operatorname{cl}(\operatorname{int}(\mathrm{cl}(\mathrm{A})))=\mathrm{f}^{-1}(\mathrm{f}(\mathrm{cl}(\operatorname{int}(\mathrm{cl}(\mathrm{A})))))$. Therefore Hence $\operatorname{cl}(\operatorname{int}(\mathrm{cl}(\mathrm{A})))$ is f -saturated whenever A is f -saturated and α-closed.

Corollary: $\mathbf{3 . 1 0}$

Let $\mathrm{f}: \quad(\mathrm{X}, \tau) \rightarrow \mathrm{Y}$ be β-L-Continuous. Then $\mathrm{cl}\left(\operatorname{int}\left(\mathrm{cl}\left(\mathrm{f}^{-1}(\mathrm{~B})\right)\right)\right)$ is f -saturated for every subset B of Y . Proof:

Let $\mathrm{B} \subseteq \mathrm{Y}$. we know that $\mathrm{f}\left(\mathrm{f}^{-1}(\mathrm{~B})\right) \subseteq \mathrm{B}$, Then
$f^{-1}\left(f\left(f^{-1}(B)\right)\right) \subseteq f^{-1}(B)$. Also $f^{-1}(B) \subseteq f^{-1}\left(f\left(f^{-1}(B)\right)\right) \subseteq f^{-1}(B)$.
So that $f^{-1}\left(f\left(f^{-1}(B)\right)\right)=f^{-1}(B)$. This proves that $f^{-1}(B)$ is f-saturated, and hence by using theorem: 3.9, $\mathrm{cl}\left(\operatorname{int}\left(\mathrm{cl}\left(\mathrm{f}^{-1}(\mathrm{~B})\right)\right)\right)$ is f -saturated.

Theorem: 3.11

Let $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow \mathrm{Y}$ be β-M-Continuous. Then
$\operatorname{int}(\mathrm{cl}(\operatorname{int}(\mathrm{A})))$ is f -saturated whenever A is f -saturated and α-open.
Proof:
Let $\mathrm{A} \subseteq \mathrm{X}$ be f -saturated. Since f is β-M-Continu Qir $^{\mathrm{s}} \mathrm{s}$
$\Rightarrow \mathrm{A}$ is β-closed set in $\mathrm{X} \Rightarrow \operatorname{int}(\mathrm{cl}(\operatorname{int}(\mathrm{A}))) \subseteq \mathrm{A}$ and since
A is α-open $\Rightarrow \mathrm{A} \subseteq \operatorname{int}(\mathrm{ll}(\operatorname{int}(\mathrm{A})))$.
(ii)

Therefore $\operatorname{int}(\mathrm{cl}(\operatorname{int}(\mathrm{A})))=\mathrm{A}$. Since A is f -saturated $\Rightarrow \mathrm{f}^{-1}(\mathrm{f}(\mathrm{A}))=\mathrm{A}$.
That implies int(cl(int(A))) $=\mathrm{f}^{-1}(\mathrm{f}(\operatorname{int}(\mathrm{ll}(\operatorname{int}(\mathrm{A})))))$. Hence $\operatorname{int}((\mathrm{ll}(\operatorname{int}(\mathrm{A})))$ is f -saturated whenever A is f -saturated and α-open.

Theorem: 3.12

Let $\mathrm{f}: \mathrm{X} \rightarrow(\mathrm{Y}, \sigma)$ be β-R-Continuous. Then
$\mathrm{cl}(\operatorname{int}(\mathrm{Cl}(\mathrm{B})))$ is f^{-1} - saturated whenever B is f^{-1}-saturated and α-closed.

Proof:

Let $\mathrm{B} \subseteq \mathrm{Y}^{\text {be }} \mathrm{f}^{-1}$-saturated.
Since f is β - R -Continuous $\Rightarrow \mathrm{B}$ is β-open set in Y ,
$\Rightarrow \operatorname{cl}(\operatorname{int}(\mathrm{cl}(\mathrm{B}))) \supseteq \mathrm{B}$, and since B is β-closed
$\Rightarrow \operatorname{cl}(\operatorname{int}(\mathrm{cl}(\mathrm{B}))) \subseteq \mathrm{B}, \quad$ Therefore $\mathrm{cl}(\operatorname{int}(\mathrm{cl}(\mathrm{B})))=\mathrm{B}$,
since B is f^{-1}-saturated $\Rightarrow f\left(f^{-1}(B)\right)=B$,
which implies that $\mathrm{f}(\mathrm{f}-1(\mathrm{cl}(\operatorname{int}(\mathrm{cl}(\mathrm{B})))))=\mathrm{cl}(\operatorname{int}(\mathrm{cl}(\mathrm{B})))$,
Therefore hence $\operatorname{cl}(\operatorname{int}(\mathrm{cl}(\mathrm{B})))$ is f^{-1}-saturated whenever B is f^{-1}-saturated and α-closed.

Theorem: 3.13

Let $\mathrm{f} \mathrm{X} \rightarrow(\mathrm{Y}, \sigma)$ be β-S-Continuous Then $\operatorname{int}(\mathrm{cl}(\operatorname{int}(\mathrm{B})))$ is f^{-1} - saturated whenever B is f^{-1}-saturated and α-open.
Proof:
Let $\mathrm{B} \subseteq \mathrm{Y}^{\text {be }} \mathrm{f}^{-1}$-saturated. Since f is β-S-Continuous
$\Rightarrow \mathrm{B}$ is β-closed set in $\mathrm{Y} \Rightarrow \operatorname{int}(\mathrm{cl}(\operatorname{int}(\mathrm{B}))) \subseteq \mathrm{B}$ and since B is α-open $\Rightarrow \operatorname{int}(\operatorname{ll}(\operatorname{int}(B))) \supseteq B$,
Therefore $\operatorname{int}(\operatorname{cl}(\operatorname{int}(\mathrm{B})))=\mathrm{B}$, since B is f^{-1}-saturated, $\mathrm{f}\left(\mathrm{f}^{-1}(\mathrm{~B})\right)=\mathrm{B}$.
Which implies that $\operatorname{int}(\operatorname{cl}(\operatorname{int}(\mathrm{B})))=\mathrm{f}(\mathrm{f}-1(\operatorname{int}(\mathrm{cl}(\operatorname{int}(\mathrm{B})))))$,
Therefore hence int(cl(int(B))) is f^{-1}-saturated whenever B is f^{-1}-saturated and α-open.

Corollary: 3.14

Let $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ be β-S-Continuous Then $\operatorname{int}(\mathrm{cl}(\operatorname{int}(\mathrm{f}(\mathrm{A}))))$ is $\mathrm{f}^{-1}-$ saturated for every subset A of X .

Proof:

Let $A \subseteq X$. We know that $f^{-1}(f(A)) \supseteq A$, Then $f(f-$
$\left.{ }^{1}(f(\mathrm{~A}))\right) \supseteq \mathrm{f}(\mathrm{A}), \quad$ Also $\mathrm{f}(\mathrm{A}) \supseteq \mathrm{f}\left(\mathrm{f}^{-1}(\mathrm{f}(\mathrm{A}))\right) \supseteq \mathrm{f}(\mathrm{A})$, So that $f(f-1(f(A)))=f(A)$. This proves that hence by using (theorem 3.13) $\operatorname{int}(\mathrm{ll}(\operatorname{int}(f(\mathrm{~A}))))$ is f^{-1} - saturated.

4 Properties

In this section we prove certain theorems related with β-open and β-closed functions.

Theorem: 4.1

Let $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ be β-open and β-Continuous, Then f is β-L-Continuous.
Let $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ be open and β-Continuous, Then f is β-R-Continuous.

Proof:

(i) \quad Let $\mathrm{A} \subseteq \mathrm{X}$ be β-open in X . Let $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ be β-open and β-Continuous, since f is β-open,
$\Rightarrow \mathrm{f}(\mathrm{A})$ is β-open in Y and since f is β-continuous,
$\Rightarrow \mathrm{f}^{-1}(\mathrm{f}(\mathrm{A}))$ is open in X . Therefore f is β-L Continuous,
This proves (i).
(ii) Let $\mathrm{B} \subseteq \mathrm{Y}$ be β-open in Y . Let $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ be open and β-Continuous, since f is β-continuous
$\Rightarrow \mathrm{f}^{-1}(\mathrm{~B})$ is open in X, and since f is open $\Rightarrow \mathrm{f}\left(\mathrm{f}^{-1}(\mathrm{~B})\right.$) is open in Y , Therefore f is β - R Continuous, This proves (ii).

Theorem: 4.2

Let $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ be β-closed and β-Continuous, Then f is β-M-Continuous.
Let $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ be closed and β-Continuous, Then f is β-S-Continuous.

Proof:

(i) \quad Let $\mathrm{A} \subseteq \mathrm{X}$ be β-closed in X . Let $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ be β-closed and β-Continuous, since f is β-closed $\Rightarrow \mathrm{f}(\mathrm{A})$ is β-closed in Y and since f is β-continuous $\Rightarrow \mathrm{f}^{-1}(\mathrm{f}(\mathrm{A}))$ is closed in X . Therefore f is β - M Continuous. This proves (i).
(ii) Let $\mathrm{B} \subseteq \mathrm{Y}$ be β-closed in Y . Let $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ be closed and β-Continuous, since f is β-continuous $\Rightarrow \mathrm{f}^{-1}(\mathrm{~B})$ is closed in X and since f is closed $\Rightarrow \mathrm{f}(\mathrm{f}-1(\mathrm{~B}))$ is closed in Y . Therefore f is β-S Continuous, This proves (ii).

ISSN 2229-5518

Theorem: 4.3

Let X be a topological space.
If A is an β-open subspace of X , the inclusion function $\mathrm{j}: \mathrm{A} \rightarrow \mathrm{X}$ is β-L-continuous and β - R -continuous.
If A is an β-closed subspace of X, the inclusion function $\mathrm{j}: \mathrm{A} \rightarrow \mathrm{X}$ is β - M -continuous and β-S-continuous.

Proof:

(i) Suppose A is an β-open subspace of X . Let $\mathrm{j}: \mathrm{A} \rightarrow \mathrm{X}$ be an inclusion function. Let $U \subset X$ be β-open in X then $j\left(j^{-1}(U)\right)=j(U \cap A)=U \cap A$ Which is open in X. Hence j is β-R-continuous. Now, let $\mathrm{U} \subseteq \mathrm{A}$ be β-open in A. Then $j^{-1}(\mathrm{j}(\mathrm{U}))=\mathrm{j}^{-1}(\mathrm{U})=\mathrm{U}$ which is open in A. Hence j is β-L-continuous, this proves (i).
(ii) Suppose A is an β-closed subspace of X . Let j : $\mathrm{A} \rightarrow \mathrm{X}$ be an inclusion function. Let $U \subset X$ be β-closed in X then $j\left(j^{-1}(U)\right)=j(U \cap A)=U \cap A$, Which is closed in X. Hence j is β-S-continuous. Now, let $\mathrm{U} \subseteq \mathrm{A}$ be β-closed in A. Then $j^{-1}(j(U))=j^{-1}(U)=U$ which is closed in A. Hence j is β-M-continuous, this proves (ii).

Theorem: 4.4

Let $\mathrm{g}: \mathrm{Y} \rightarrow \mathrm{Z}$ and $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ be any two functions. Then the following hold.
(i) If $\mathrm{g}: \mathrm{Y} \rightarrow \mathrm{Z}$ is β-L-continuous (resp. β-M-continuous) and $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ is β-open (resp. β-closed) and continuous, then $\mathrm{g} \mathrm{Of:} \mathrm{X} \rightarrow \mathrm{Z}$ is β-L-continuous (resp. β-M-continuous)
(ii) If $\mathrm{g}: \mathrm{Y} \rightarrow \mathrm{Z}$ is open (resp. closed) and β-continuous and $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ is R -continuous (resp. S-continuous), then gOf is β - R -continuous (resp. β-S-continuous).

Proof:

(i) Suppose g is β-L-continuous (resp. β - M continuous) and f is β-open (resp. β-closed) and continuous. Let A be β-open (resp. β-closed) in X.
Then $(\mathrm{gOf})^{-1} .(\mathrm{g} O \mathrm{f})(\mathrm{A})=\mathrm{f}^{-1}\left(\mathrm{~g}^{-1}(\mathrm{~g}(\mathrm{f}(\mathrm{A})))\right)$. Since f is β-open (resp. β-closed) $\Rightarrow \mathrm{f}(\mathrm{A})$ is β-open (resp. β-closed) in Y. Since g is β-L-continuous (resp. β-M-continuous) $\Rightarrow \mathrm{g}^{-1}(\mathrm{~g}(\mathrm{f}(\mathrm{A})))$ is open (resp. closed) in Y. Since f is continuous $\Rightarrow \mathrm{f}^{-1}\left(\mathrm{~g}^{-1}(\mathrm{~g}(\mathrm{f}(\mathrm{A})))\right)$ is open (resp. β-closed) in X . Therefore, g Of is β-L-continuous (resp. β - M -continuous). This proves (i).
(ii) Let $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ be R-continuous (resp. S-continuous) and g: $\mathrm{Y} \rightarrow \mathrm{Z}$ be open (resp. closed) and β-continuous.
Let B be β-open (resp. β-closed) in Z . Then
$(\mathrm{g} O \mathrm{f})(\mathrm{gOf})^{-1}(\mathrm{~B})=(\mathrm{g} \mathrm{Of})\left(\mathrm{f}^{-1}\left(\mathrm{~g}^{-1}(\mathrm{~B})\right)\right)=\mathrm{g}\left(\mathrm{f}\left(\mathrm{f}^{-1}\left(\mathrm{~g}^{-1}(\mathrm{~B})\right)\right)\right)$.
Since g is β-continuous $g^{-1}(B)$ is open (resp. closed) in Y.
Since f is R -continuous (resp. S-continuous) $\Rightarrow \mathrm{f}\left(\mathrm{f}^{-1}\left(\mathrm{~g}^{-1}(\mathrm{~B})\right)\right)$ is open (resp. closed) in Y.

Since g is open (resp. closed) $\Rightarrow g\left(f\left(f^{-1}\left(g^{-1}(B)\right)\right)\right)$ is open (resp. closed) in Z. Therefore, g Of is β - R -continuous (resp. β-S-continuous). This proves (ii).

Theorem: 4.5

If $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ is β-L-continuous and if A is an open subspace of X , then the restriction of f to A is β-L-continuous.

Proof:

Let $h=f / A$. Then $h=f O j$, where j is the inclusion map $j: A \rightarrow X$ since j is open and continuous and since $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ is β-L-continuous, using theorem (4.4 (i))
$\Rightarrow \mathrm{h}$ is β-L-continuous.

Theorem: 4.6

If $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ is β-M-continuous and if A is a closed subspace of X, then the restriction of f to A is $\beta-\mathrm{M}$-continuous.

Proof:

Let $h=f / A$. Then $h=f O j$, where j is the inclusion map $j: A \rightarrow X$ since j is closed and continuous and since $f: X \rightarrow Y$ is β-M-continuous, using theorem (4.4 (i)),
$\Rightarrow \mathrm{h}$ is β - M -continuous.

Theorem: 4.7

Let $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ be β-R-continuous. Let $\mathrm{f}(\mathrm{x}) \subseteq \mathrm{Z} \subseteq \mathrm{Y}$ and $\mathrm{f}(\mathrm{X})$ be open in Z. Let $h: X \rightarrow Z$ be obtained by from f by restricting the co-domain of f to Z. Then h is β-R-continuous.

Proof:

Clearly h = jOf where $j: f(x) \rightarrow Z$ is an inclusion map. Since $f(X)$ is open in Z, the inclusion map j is both open and β-continuous. Then by applying theorem 4.4(ii),
$\Rightarrow \mathrm{h}$ is β - R -continuous.

Theorem: 4.8

Let $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ be β-S-continuous. Let $\mathrm{f}(\mathrm{x}) \subseteq \mathrm{Z} \subseteq \mathrm{Y}$ and $\mathrm{f}(\mathrm{X})$ be closed in Z. Let $h: X \rightarrow Z$ be obtained by from f by restricting the co-domain of f to Z. Then h is β-S-continuous.

Proof:

Clearly $h=j$ Of where $j: f(x) \rightarrow Z$ is an inclusion map. Since $f(X)$ is closed in Z, the inclusion map j is both closed and β-continuous. Then by applying theorem 4.4(ii)
$\Rightarrow \mathrm{h}$ is β-S-continuous.

Now we establish the pasting lemmas for β-R-continuous and β-S-continuous functions.

Theorem: 4.9

Let $\mathrm{X}=\mathrm{A} \cup \mathrm{B}$. Let $\mathrm{f}: \mathrm{A} \rightarrow(\mathrm{Y}, \sigma)$ and $\mathrm{g}: \mathrm{B} \rightarrow(\mathrm{Y}, \sigma)$ be β-R-continuous (res. β-S-continuous) $\mathrm{f}(\mathrm{x})=\mathrm{g}(\mathrm{x})$ for every $\mathrm{x} \in \mathrm{A} \cap \mathrm{B}$, then f and g combined to give a β-R-continuous (res. β-S-continuous) function $\mathrm{h}: \mathrm{X} \rightarrow \mathrm{Y}$ defined by $h(x)=f(x)$ if $x \in A$, and $h(x)=g(x)$ if $x \in B$.

Proof:

Let C be a β-open (res. β-closed) set in Y .
Now $h^{-1}(\mathrm{C})=\mathrm{h}\left(\mathrm{f}^{-1}(\mathrm{C}) \cup \mathrm{g}^{-1}(\mathrm{C})\right)=\mathrm{h}(\mathrm{f}-1(\mathrm{C})) \cup \mathrm{h}\left(\mathrm{g}^{-1}(\mathrm{C})\right)=$ $\mathrm{f}\left(\mathrm{f}^{-1}(\mathrm{C})\right) \cup \mathrm{g}\left(\mathrm{g}^{-1}(\mathrm{C})\right)$. Since f is β-R-continuous (res. β-S-continuous), $\mathrm{f}\left(\mathrm{f}^{-1}(\mathrm{C})\right)$ is open (resp. closed) in Y and Since g is β - R -continuous (res. β-S-continuous), $\mathrm{g}\left(\mathrm{g}^{-1}(\mathrm{C})\right)$ is open (resp. closed) in Y. Therefore, $\mathrm{hh}^{-1}(\mathrm{C})$ is open (resp. closed) in Y. Hence h is β - R -continuous (resp. β-S-continuous).

Characterizations

Theorem: 5.1

A function $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ is β-L-continuous if and only if $\mathrm{f}^{-1}\left(\mathrm{f}^{\#}(\mathrm{~A})\right)$ is closed in X for every β-closed subset A of X .

Proof:

Suppose f is β-L-continuous. Let A be β-closed in X . Then $\mathrm{G}=\mathrm{X} / \mathrm{A}$ is β-open in X . Since f is β-L-continuous and since G is β-open in $\mathrm{X} \Rightarrow \mathrm{f}^{-1}(\mathrm{f}(\mathrm{G}))$ is open in X . By applying lemma $((2.5)-(\mathrm{i})) \Rightarrow \mathrm{f}^{-1}\left(\mathrm{f}^{\#}(\mathrm{~A})\right)=\mathrm{X} \backslash \mathrm{f}^{-1}(\mathrm{f}(\mathrm{X} \backslash \mathrm{A}))$ $=X \backslash f^{-1}(f(G))$. That implies $f^{-1}\left(f^{\#}(A)\right)$ is closed in X. Conversely, we assume that $\mathrm{f}^{-1}\left(\mathrm{f}^{\#}(\mathrm{~A})\right)$ is closed in X for every β-closed subset A of X . Let G be a β-open in X . By our assumption, $\mathrm{f}^{-1}\left(\mathrm{f}^{\#}(\mathrm{~A})\right)$ is closed in X , where $\mathrm{A}=$
$X \backslash G$. By using lemma ((2.5)-(ii))
$\Rightarrow \mathrm{f}^{-1}(\mathrm{f}(\mathrm{G}))=\mathrm{X} \backslash \mathrm{f}^{-1}\left(\mathrm{f}^{\#}(\mathrm{X} \backslash \mathrm{G})\right)=\mathrm{X} \backslash \mathrm{f}^{-1}\left(\mathrm{f}^{\#}(\mathrm{~A})\right)$.
That implies $f^{-1}(f(G))$ is open in X. Therefore, hence f is β-L-continuous.

Theorem: 5.2

A function $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ is β-M-continuous if and only if $\mathrm{f}^{-1}(\mathrm{f} \#(\mathrm{G}))$ is open in X for every β-open subset G of X.

Proof:

Suppose f is β - M -continuous. Let G be β-open in X .
Then $\mathrm{A}=\mathrm{X} \backslash \mathrm{G}$ is β-closed in X . Since f is β-M-continuous and since A is β-closed in $\mathrm{X} \Rightarrow \mathrm{f}^{-1}(\mathrm{f}(\mathrm{A}))$ is closed in X.
By applying lemma $((2.5)-(\mathrm{i})) \Rightarrow \mathrm{f}^{-1}\left(\mathrm{f}^{\#}(\mathrm{G})\right)=\mathrm{X} \backslash \mathrm{f}^{-1}(\mathrm{f}(\mathrm{X} \backslash \mathrm{G}))$
$=X \backslash f^{-1}(f(A))$. That implies $f^{-1}\left(f^{\#}(G)\right)$ is open in X.
Conversely, we assume that $\mathrm{f}^{-1}\left(\mathrm{f}^{\#}(\mathrm{G})\right)$ is open in X for every β-open subset G of X . Let A be a β-closed in X .
By our assumption, $f^{-1}\left(\mathrm{f}^{\#}(\mathrm{G})\right)$ is open in X, where $G=X \backslash A$. By using lemma ((2.5)-(ii)) $\Rightarrow \mathrm{f}^{-1}(\mathrm{f}(\mathrm{A}))=\mathrm{X} \backslash \mathrm{f}^{-1}\left(\mathrm{f}^{\#}(\mathrm{X} \backslash \mathrm{A})\right)=$ $X \backslash f^{-1}\left(\mathrm{f}^{\#}(\mathrm{G})\right)$. That implies $f^{-1}(\mathrm{f}(\mathrm{A}))$ is open in X.
Therefore, hence f is β-M-continuous.

Theorem: 5.3

A function $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ is β-R-continuous if and only if $\mathrm{f}^{\#}(\mathrm{f}-1(\mathrm{~B}))$ is closed in Y for every β-closed subset B of Y .

Proof:

Suppose f is β - R -continuous. Let B be β-closed in Y . Then $\mathrm{G}=\mathrm{Y} \backslash \mathrm{B}$ is β-open in Y . Since f is β-R-continuous and since G is β-open in $\mathrm{Y} \Rightarrow \mathrm{f}\left(\mathrm{f}^{-1}(\mathrm{G})\right)$ is open in Y .
Now by using lemma ((2.6)(i)) $\left.\Rightarrow \mathrm{f}^{\#(\mathrm{f}} \mathrm{f}^{-1}(\mathrm{~B})\right)=\mathrm{Y} \backslash \mathrm{f}\left(\mathrm{f}^{-1}(\mathrm{Y} \backslash \mathrm{B})\right)$ $=Y \backslash f\left(f^{-1}(\mathrm{G})\right)$. That implies $\mathrm{f}^{\#}\left(\mathrm{f}^{-1}(\mathrm{~B})\right)$ is closed in Y . Conversely, we assume that $\mathrm{f}^{\#}\left(\mathrm{f}^{-1}(\mathrm{~B})\right)$ is closed in Y for every β-closed subset B of Y . Let G be β-open in Y .
Let $\mathrm{B}=\mathrm{Y} \backslash \mathrm{G}$. By our assumption, $\mathrm{f}^{\#}\left(\mathrm{f}^{-1}(\mathrm{~B})\right)$ is closed in Y . By lemma ((2.6)(ii))
$\Rightarrow \mathrm{f}\left(\mathrm{f}^{-1}(\mathrm{G})\right)=\mathrm{Y} \backslash\left(\mathrm{f}^{\#}(\mathrm{f}-1(\mathrm{Y} \backslash \mathrm{G}))\right)=\mathrm{Y} \backslash \mathrm{f}^{\#}(\mathrm{f}-1(\mathrm{~B}))$,
This proves that $f(f-1(G))$ is open in Y. Therefore, hence f is β-R-continuous.

Theorem: 5.4

The function $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ is β-S-continuous if and only if f \# ($\mathrm{f}-1(\mathrm{G})$) is open in Y for every β-open subset G of Y .

Proof:

Suppose f is β-S-continuous. Let G be β-open in Y . Then $\mathrm{B}=\mathrm{Y} \backslash \mathrm{G}$ is β-closed in Y . Since f is β-S-continuous and since B is β-closed in $\mathrm{Y} \Rightarrow \mathrm{f}\left(\mathrm{f}^{-1}(\mathrm{~B})\right)$ is open in Y .
Now by using lemma $((2.6)(\mathrm{i})) \Rightarrow \mathrm{f}^{\#}\left(\mathrm{f}^{-1}(\mathrm{G})\right)=\mathrm{Y} \backslash \mathrm{f}\left(\mathrm{f}^{-1}(\mathrm{Y} \backslash \mathrm{G})\right)$ $=Y \backslash f\left(f^{-1}(\mathrm{~B})\right)$. That implies $\mathrm{f}^{\#}\left(\mathrm{f}^{-1}(\mathrm{G})\right)$ is open in Y .
Conversely, we assume that f \# $\left(\mathrm{f}^{-1}(\mathrm{G})\right)$ is open in Y for every β-open subset G of Y . Let B be β-closed in Y .
Let $\mathrm{G}=\mathrm{Y} \backslash$ B. By our assumption, $\mathrm{f}^{\#}(\mathrm{f}-1(\mathrm{G}))$ is open in Y . By lemma ((2.6)(ii))
$\Rightarrow f\left(\mathrm{f}^{-1}(\mathrm{~B})\right)=\mathrm{Y} \backslash\left(\mathrm{f}^{\#}(\mathrm{f}-1(\mathrm{Y} \backslash \mathrm{B}))\right)=\mathrm{Y} \backslash \mathrm{f}^{\#}\left(\mathrm{f}^{-1}(\mathrm{G})\right)$,
This proves that $f\left(\mathrm{f}^{-1}(\mathrm{~B})\right)$ is closed in Y . Therefore, hence f is β-S-continuous.

Theorem: 5.5

Let $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow \mathrm{Y}$ be a function. Then the following are equivalent.
(i) f is β-L-continuous,
(ii) for every β-closed subset A of $\mathrm{X}, \mathrm{f}^{-1}\left(\mathrm{f}^{\#}(\mathrm{~A})\right.$ is closed in X ,
(iii)for every $\mathrm{x} \in \mathrm{X}$ and for every β-open set U in X with
$f(x) \in f(U)$ there is an open set G in X with $x \in G$ and $f(G) \subseteq f(U)$,
(iv) $\mathrm{f}^{-1}(\mathrm{f}(\mathrm{cl}(\operatorname{int}(\mathrm{cl}(\mathrm{A}))))) \subseteq \operatorname{int}(\mathrm{f}-1(\mathrm{f}(\mathrm{A})))$ for every α-closed subset A of X.
(v) $\operatorname{cl}^{\left(f-1\left(f^{\#}(\mathrm{~A})\right)\right)} \subseteq \mathrm{f}^{-1}\left(\mathrm{f}^{\#}(\operatorname{int}(\mathrm{cl}(\operatorname{int}(\mathrm{A}))))\right.$ for every α-open subset A of X.

Proof:

(i) \Leftrightarrow (ii): follows from theorem 5.1.
(i) \Leftrightarrow (iii): Suppose f is β-L-continuous.

ISSN 2229-5518

Let U be β-open set in X such that $f(x) \in f(U)$.
Since f is β-L-continuous, $\mathrm{f}^{-1}(\mathrm{f}(\mathrm{U}))$ is open in X .
Since $x \in f^{-1}(f(U))$ there is an open set G in X such that $x \in G \subseteq f^{-1}(f(U)) \Rightarrow f(G)-f\left(\mathrm{f}^{-1}(\mathrm{f}(\mathrm{U}))\right) \subseteq \mathrm{f}(\mathrm{U})$.
This proves (iii).
Conversely, suppose (iii) holds. Let U be β-open set in X
and $x \in f^{-1}(f(U))$. Then $f(x) \in f(U)$. By using (iii), there is an
open set G in X containing x such that $f(G) \subseteq f(U)$.
Therefore $x \in G \subseteq f^{-1}(f(G)) \subseteq f^{-1}(f(U)) \Rightarrow f^{-1}(f(U))$ is open
set in X. This completes the proof for (i) \Leftrightarrow (iii).
(i) \Leftrightarrow (iv): Suppose f is β-L-continuous.

Let A be a α-closed subset of X . Then $\operatorname{cl}(\operatorname{int}(\mathrm{cl}(\mathrm{A})))$ is
β-open set in X. By the β-L-continuity of f ,
we see that $\mathrm{f}^{-1}(\mathrm{f}(\mathrm{cl}(\operatorname{int}(\mathrm{cl}(\mathrm{A})))))$ is open in X.
$\Rightarrow \mathrm{f}^{-1}(\mathrm{f}(\mathrm{cl}(\operatorname{int}(\mathrm{cl}(\mathrm{A}))))) \subseteq \operatorname{int}(\mathrm{f}-1(\mathrm{f}(\mathrm{cl}(\operatorname{int}(\mathrm{cl}(\mathrm{A}))))))$.
since A is α-closed in X ,
We have $\mathrm{f}^{-1}(\mathrm{f}(\mathrm{cl}(\operatorname{int}(\mathrm{cl}(\mathrm{A}))))) \subseteq \mathrm{f}^{-1}(\mathrm{f}(\mathrm{A}))$,
$\Rightarrow \operatorname{int}\left(\mathrm{f}^{-1}(\mathrm{f}(\mathrm{cl}(\operatorname{int}(\mathrm{cl}(\mathrm{A})))))\right) \subseteq \operatorname{int}\left(\mathrm{f}^{-1}(\mathrm{f}(\mathrm{A}))\right)$,
It follows that $\mathrm{f}^{-1}(\mathrm{f}(\mathrm{cl}(\operatorname{int}(\mathrm{cl}(\mathrm{A}))))) \subseteq \operatorname{int}\left(\mathrm{f}^{-1}(\mathrm{f}(\mathrm{A}))\right)$.
This proves (iv).
Conversely, We assume that (iv) holds.
Let U be β-open set in $\mathrm{X} \Rightarrow \mathrm{f}^{-1}(\mathrm{f}(\mathrm{U})) \subseteq \mathrm{f}^{-1}(\mathrm{f}(\mathrm{cl}(\operatorname{int}(\mathrm{cl}(\mathrm{U})))))$,
since U is α-closed by applying (iv)
we get $\mathrm{f}^{-1}(\mathrm{f}(\mathrm{cl}(\operatorname{int}(\mathrm{cl}(\mathrm{U}))))) \subseteq \operatorname{int}\left(\mathrm{f}^{-1}(\mathrm{f}(\mathrm{U}))\right)$,
Therefore $\mathrm{f}^{-1}(\mathrm{f}(\mathrm{U})) \subseteq \operatorname{int}\left(\mathrm{f}^{-1}(\mathrm{f}(\mathrm{U}))\right)$ and hence $\mathrm{f}^{-1}(\mathrm{f}(\mathrm{U}))$ is open in X.
This proves that f is β-L-continuous.
(ii) $\Leftrightarrow(\mathrm{v})$: Suppose (ii) holds. Let A be a α-open subset of
X. By using (ii), $\mathrm{f}^{-1}(\mathrm{f}$ \#(int(cl(int(A)))) is closed in X
$\Rightarrow \operatorname{cl}\left(\mathrm{f}^{-1}\left(\mathrm{f}^{\#}(\operatorname{int}(\mathrm{cl}(\operatorname{int}(\mathrm{A}))))\right)\right)=\mathrm{f}^{-1}\left(\mathrm{f}^{\#}(\operatorname{int}(\operatorname{cl}(\operatorname{int}(\mathrm{~A}))))\right.$.
Since A is α-open $\Rightarrow \mathrm{f}^{-1}(\mathrm{f}(\#(\mathrm{~A}))) \subseteq \mathrm{f}^{-1}\left(\mathrm{f}^{\#}(\operatorname{int}(\mathrm{cl}(\operatorname{int}(\mathrm{A}))))\right)$,
$\Rightarrow \operatorname{cl}(\mathrm{f}-1(\mathrm{f}(\#(\mathrm{~A})))) \subseteq \operatorname{cl}\left(\mathrm{f}^{-1}\left(\mathrm{f}^{\#}(\operatorname{int}(\mathrm{cl}(\operatorname{int}(\mathrm{A}))))\right)\right)$
it follows that $\mathrm{cl}(\mathrm{f}-1(\mathrm{f}(\#(\mathrm{~A})))) \subseteq \mathrm{f}^{-1}\left(\mathrm{f}^{\#}(\operatorname{int}(\mathrm{cl}(\operatorname{int}(\mathrm{A}))))\right)$,
This proves (v),
Conversely, let us assume that (v) holds.
Let A be a β-closed subset of X
$\Rightarrow \mathrm{f}^{-1}\left(\mathrm{f}^{\#}(\operatorname{int}(\mathrm{cl}(\operatorname{int}(\mathrm{A}))))\right) \subseteq \mathrm{f}^{-1}\left(\mathrm{f}^{\#}(\mathrm{~A})\right)$,
since A is α-open by (v),
we see that $\mathrm{cl}\left(\mathrm{f}^{-1}\left(\mathrm{f}^{\#}(\mathrm{~A})\right)\right) \subseteq \mathrm{f}^{-1}\left(\mathrm{f}^{\#}(\operatorname{int}(\mathrm{cl}(\operatorname{int}(\mathrm{A}))))\right)$,
$\mathrm{cl}\left(\mathrm{f}^{-1}\left(\mathrm{f}^{\#}(\mathrm{~A})\right)\right) \subseteq \mathrm{f}^{-1}\left(\mathrm{f}^{\#}(\mathrm{~A})\right)$,Therefore $\mathrm{f}^{-1}\left(\mathrm{f}^{\#}(\mathrm{~A})\right)$ is closed in X .
This proves (ii).

Theorem: 5.6

Let $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow \mathrm{Y}$ be a function. Then the following are equivalent.
(i) f is β-M-continuous,
(ii) for every β-open subset G of $\mathrm{X}, \mathrm{f}^{-1}\left(\mathrm{f}^{\#}(\mathrm{G})\right.$ is open in X ,
(iii) $\left.\mathrm{cl}^{(f-1}(\mathrm{f}(\mathrm{A}))\right) \subseteq \mathrm{f}^{-1}(\mathrm{f}(\operatorname{int}(\mathrm{cl}(\operatorname{int}(\mathrm{A})))))$ for every α-open subset A of X.
(iv) $\mathrm{f}^{-1}\left(\mathrm{f}^{\#}(\mathrm{cl}(\operatorname{int}(\mathrm{cl}(\mathrm{A}))))\right) \subseteq \operatorname{int}\left(\mathrm{f}^{-1}\left(\mathrm{f}^{\#}(\mathrm{~A})\right)\right)$ for every $\alpha-$ closed subset A of X.

Proof:

(i) \Leftrightarrow (ii): follows from theorem 5.2.
(i) \Leftrightarrow (iii): Suppose f is β-M-continuous.

Let A be a α-open set in X . $\operatorname{int}(\mathrm{cl}(\operatorname{int}(\mathrm{A})))$ is β-closed in X ,
Since f is β-M-continuous, $\mathrm{f}^{-1}(\mathrm{f}(\operatorname{int}(\operatorname{cl}(\operatorname{int}(\mathrm{A})))))$ is closed in
$X, \Rightarrow \operatorname{cl}\left(\mathrm{f}^{-1}(\mathrm{f}(\operatorname{int}(\mathrm{cl}(\operatorname{int}(\mathrm{A})))))\right)=\mathrm{f}^{-1}(\mathrm{f}(\operatorname{int}(\mathrm{cl}(\operatorname{int}(\mathrm{A})))))$
Since A is α-open in X
we see that $\mathrm{f}^{-1}(\mathrm{f}(\mathrm{A})) \subseteq \mathrm{f}^{-1}(\mathrm{f}(\operatorname{int}(\mathrm{cl}(\operatorname{int}(\mathrm{A})))))$,
$\Rightarrow \operatorname{cl}\left(\mathrm{f}^{-1}(\mathrm{f}(\mathrm{A}))\right) \subseteq \operatorname{cl}\left(\mathrm{f}^{-1}(\mathrm{f}(\operatorname{int}(\mathrm{cl}(\operatorname{int}(\mathrm{A})))))\right.$
$=f-1(f(\operatorname{int}(\operatorname{cl}(\operatorname{int}(A)))))$.
$\Rightarrow \operatorname{cl}\left(\mathrm{f}^{-1}(\mathrm{f}(\mathrm{A}))\right) \subseteq \mathrm{f}^{-1}(\mathrm{f}(\operatorname{int}(\mathrm{cl}(\operatorname{int}(\mathrm{A})))))$. This proves (iii).
Conversely, suppose (iii) holds.
Let A be β-closed subset in X
$\Rightarrow \mathrm{f}^{-1}(\mathrm{f}(\operatorname{int}(\mathrm{cl}(\operatorname{int}(\mathrm{A}))))) \subseteq \mathrm{f}^{-1}(\mathrm{f}(\mathrm{A}))$,
Since A is α-open by applying (iii),
$\operatorname{cl}\left(\mathrm{f}^{-1}(\mathrm{f}(\mathrm{A}))\right) \subseteq \mathrm{f}^{-1}(\mathrm{f}(\operatorname{int}(\mathrm{cl}(\operatorname{int}(\mathrm{A})))))$,
$\Rightarrow \mathrm{cl}(\mathrm{f}-1(\mathrm{f}(\mathrm{A}))) \subseteq \mathrm{f}^{-1}(\mathrm{f}(\mathrm{A}))$ That implies $\mathrm{f}^{-1}(\mathrm{f}(\mathrm{A}))$ is closed set in X. This completes the proof for (i) \Leftrightarrow (iii).
(ii) \Leftrightarrow (iv): Suppose (ii) holds. Let A be a α-closed subset of X. Then $\operatorname{cl}(\operatorname{int}(\mathrm{cl}(\mathrm{A})))$ is β-open in X.
By (ii), $\mathrm{f}^{-1}(\mathrm{f} \#(\mathrm{cl}(\operatorname{int}(\mathrm{cl}(\mathrm{A})))))$ is open in X ,
$\Rightarrow \mathrm{f}^{-1}(\mathrm{f} \#(\operatorname{cl}(\operatorname{int}(\mathrm{cl}(\mathrm{A}))))) \subseteq \operatorname{int}\left(\mathrm{f}^{-1}\left(\mathrm{f}^{\#}(\operatorname{cl}(\operatorname{int}(\mathrm{cl}(\mathrm{A}))))\right)\right.$,
Since A is $\alpha-\operatorname{closed} \Rightarrow \mathrm{f}^{-1}\left(\mathrm{f}^{\#}(\operatorname{cl}(\operatorname{int}(\mathrm{cl}(\mathrm{A}))))\right) \subseteq \mathrm{f}^{-1}\left(\mathrm{f}^{\#}(\mathrm{~A})\right)$,
$\Rightarrow \operatorname{int}\left(\mathrm{f}^{-1}\left(\mathrm{f}^{\#}(\operatorname{cl}(\operatorname{int}(\mathrm{cl}(\mathrm{A}))))\right) \subseteq \operatorname{int}\left(\mathrm{f}^{-1}(\mathrm{f} \#(\mathrm{~A}))\right)\right.$,
we see that $\mathrm{f}^{-1}\left(\mathrm{f}^{\#}(\operatorname{cl}(\operatorname{int}(\mathrm{cl}(\mathrm{A}))))\right) \subseteq \operatorname{int}\left(\mathrm{f}^{-1}\left(\mathrm{f}^{\#}(\mathrm{~A})\right)\right)$.
This proves (iv).
Conversely, suppose (iv) holds. Let G be β-open in X,
$\Rightarrow \mathrm{f}^{-1}(\mathrm{f} \#(\mathrm{G})) \subseteq \mathrm{f}^{-1}(\mathrm{f} \#(\operatorname{cl}(\operatorname{int}(\mathrm{cl}(\mathrm{G})))))$.
Since G is α-closed in X , by using (iv)
$\Rightarrow \mathrm{f}^{-1}\left(\mathrm{f}^{\#}(\mathrm{cl}(\operatorname{int}(\mathrm{cl}(\mathrm{G}))))\right) \subseteq \operatorname{int}\left(\mathrm{f}^{-1}\left(\mathrm{f}^{\#}(\mathrm{G})\right)\right)$.
$\Rightarrow \mathrm{f}^{-1}\left(\mathrm{f}^{\#}(\mathrm{G})\right) \subseteq \mathrm{f}^{-1}\left(\mathrm{f}^{\#}(\mathrm{cl}(\operatorname{int}(\mathrm{cl}(\mathrm{G}))))\right) \subseteq \operatorname{int}\left(\mathrm{f}^{-1}\left(\mathrm{f}^{\#}(\mathrm{G})\right)\right)$,
$\Rightarrow \mathrm{f}^{-1}(\mathrm{f} \#(\mathrm{G})) \subseteq \operatorname{int}\left(\mathrm{f}^{-1}(\mathrm{f} \#(\mathrm{G}))\right)$,
Then it follows that $f^{-1}\left(f^{\#}(\mathrm{G})\right)$ is open in $X^{\text {. This proves (ii). }}$

Theorem: 5.7

Let $\mathrm{f}: \mathrm{X} \rightarrow(\mathrm{Y}, \sigma)$ be a function and σ be a space with a base consisting of f^{-1} saturated open sets. Then the following are equivalent.
(i) f is β-R-continuous,
(ii) for every β-closed subset B of $\mathrm{X}, \mathrm{f}^{\#}(\mathrm{f}-1(\mathrm{~B})$ is closed in Y ,
(iii)for every $x \in X$ and for every β-open set V in Y with
$x \in f^{-1}(V)$ there is an open set G in Y with $f(x) \in G$ and
$\mathrm{f}^{-1}(\mathrm{G}) \subseteq \mathrm{f}^{-1}(\mathrm{~V})$,
(iv) $f\left(\mathrm{f}^{-1}(\mathrm{cl}(\operatorname{int}(\mathrm{cl}(\mathrm{B}))))\right) \subseteq \operatorname{int}\left(\mathrm{f}\left(\mathrm{f}^{-1}(\mathrm{~B})\right)\right)$ for every α-closed subset B of Y.
(v) $\left.\left.\operatorname{cl}\left(\mathrm{f}^{\#(f-1}(\mathrm{B})\right)\right) \subseteq \mathrm{f}^{\#(\mathrm{f}}{ }^{-1}(\operatorname{int}(\mathrm{cl}(\operatorname{int}(\mathrm{B}))))\right)$ for every α-open subset B of Y.

Proof:

(i) \Leftrightarrow (ii): follows from theorem 5.3.
(i) \Leftrightarrow (iii): Suppose f is β-R-continuous. Let V be a β-open set in Y such that $x \in f^{-1}(\mathrm{~V})$.
Since f is β - R -continuous, $\mathrm{f}(\mathrm{f}-1(\mathrm{~V}))$ is open in Y .
$\mathrm{f}(\mathrm{x}) \in \mathrm{f}(\mathrm{f}-1(\mathrm{~V}))$ there is an open set G in Y such that $\mathrm{f}(\mathrm{x}) \in \mathrm{G} \subseteq \mathrm{f}\left(\mathrm{f}^{-1}(\mathrm{~V})\right)$.
That implies $\mathrm{x} \in \mathrm{f}^{-1}(\mathrm{G}) \subseteq \mathrm{f}^{-1}\left(\mathrm{f}\left(\mathrm{f}^{-1}(\mathrm{~V})\right)\right) \in \mathrm{f}^{-1}(\mathrm{~V})$. This proves (iii).
Conversely, suppose (iii) holds.
Let V be β-open in Y and $\mathrm{y} \in \mathrm{f}(\mathrm{f}-1(\mathrm{G}))$, Then $\mathrm{y}=\mathrm{f}(\mathrm{x})$ for some $x \in f^{-1}(V)$.
By using (iii) there is an open set G in Y containing $f(x)$ such that $f^{-1}(G) \subseteq f^{-1}(\mathrm{~V})$. We choose G to a f^{-1}-saturated in Y.
Then $\mathrm{G}=\mathrm{f}(\mathrm{f}-1(\mathrm{G})) \subseteq \mathrm{f}\left(\mathrm{f}^{-1}(\mathrm{~V})\right)$.
This proves that $f\left(f^{-1}(\mathrm{~V})\right)$ is open in Y . This proves that f is β-R-continuous.
(i) \Leftrightarrow (iv): Suppose f is β-R-continuous. Let B be α-closed subset in Y.
Then $\mathrm{cl}(\operatorname{int}(\mathrm{cl}(\mathrm{B})))$ is β-open set in Y . By the β-R-continuity
of $\mathrm{f}, \Rightarrow \mathrm{f}(\mathrm{f}-1(\mathrm{cl}(\operatorname{int}(\mathrm{cl}(\mathrm{B})))))$ is open in Y
$\Rightarrow \mathrm{f}(\mathrm{f}-1(\mathrm{cl}(\operatorname{int}(\mathrm{cl}(\mathrm{B}))))) \subseteq \operatorname{int}\left(\mathrm{f}\left(\mathrm{f}^{-1}(\operatorname{cl}(\operatorname{int}(\mathrm{cl}(\mathrm{B}))))\right)\right)$.
Since B is α-closed in $\left.Y \Rightarrow f\left(\mathrm{f}^{-1}(\mathrm{cl}(\operatorname{int}(\mathrm{cl}(\mathrm{B}))))\right) \subseteq \mathrm{f}^{\mathrm{f}} \mathrm{f}^{-1}(\mathrm{~B})\right)$,
$\Rightarrow \operatorname{int}\left(f\left(\mathrm{f}^{-1}(\mathrm{cl}(\operatorname{int}(\mathrm{cl}(\mathrm{B}))))\right)\right) \subseteq \operatorname{int}\left(\mathrm{f}\left(\mathrm{f}^{-1}(\mathrm{~B})\right)\right)$.
Then It follows that $f\left(\mathrm{f}^{-1}(\operatorname{cl}(\operatorname{int}(\mathrm{cl}(\mathrm{B}))))\right) \subseteq \operatorname{int}\left(\mathrm{f}\left(\mathrm{f}^{-1}(\mathrm{~B})\right)\right)$.
This proves (iv).
Conversely, we assume that (iv) holds.
Let B be β-open set in $\left.\mathrm{Y} \Rightarrow \mathrm{f}\left(\mathrm{f}^{-1}(\mathrm{~B})\right) \subseteq \mathrm{f}^{(\mathrm{f}}{ }^{-1}(\mathrm{cl}(\operatorname{int}(\mathrm{cl}(\mathrm{B}))))\right)$.
Since B is α-closed by applying (iv),
we get $\mathrm{f}\left(\mathrm{f}^{-1}(\mathrm{cl}(\operatorname{int}(\mathrm{cl}(\mathrm{B}))))\right) \subseteq \operatorname{int}\left(\mathrm{f}\left(\mathrm{f}^{-1}(\mathrm{~B})\right)\right)$
Therefore $f\left(f^{-1}(B)\right) \subseteq \operatorname{int}\left(f\left(f^{-1}(B)\right)\right)$ and hence $f\left(f^{-1}(B)\right)$ is open in Y . This proves that f is β-R-continuous.
(ii) $\Leftrightarrow(v)$: Suppose (ii) holds.

Let B be a α-open subset of Y.
By using (ii) $\mathrm{f}^{\text {\# }}(\mathrm{f}-1(\operatorname{int}(\mathrm{cl}(\operatorname{int}(\mathrm{B})))))$ is closed in Y .
$\Rightarrow \operatorname{cl}\left(\mathrm{f}^{\#}(\mathrm{f}-1(\operatorname{int}(\mathrm{cl}(\operatorname{int}(\mathrm{B})))))\right)=\mathrm{f}^{\#}(\mathrm{f}-1(\operatorname{int}(\operatorname{cl}(\operatorname{int}(\mathrm{~B})))))$
Since B is α-open in Y,
we see that, $\mathrm{f}^{\#}\left(\mathrm{f}{ }^{-1}(\mathrm{~B})\right) \subseteq \mathrm{f}^{\#}\left(\mathrm{f}^{-1}(\operatorname{int}(\mathrm{cl}(\operatorname{int}(\mathrm{B}))))\right)$,
$\Rightarrow \operatorname{cl}\left(\mathrm{f}^{\#}\left(\mathrm{f}^{-1}(\mathrm{~B})\right)\right) \subseteq \operatorname{cl}\left(\mathrm{f}^{\#}\left(\mathrm{f}^{-1}(\operatorname{int}(\mathrm{cl}(\operatorname{int}(\mathrm{B}))))\right)\right)$,
it follows that $\left.\mathrm{cl}\left(\mathrm{f}^{\#}\left(\mathrm{f}^{-1}(\mathrm{~B})\right)\right) \subseteq \mathrm{f}^{\#(\mathrm{f}}{ }^{-1}(\operatorname{int}(\mathrm{cl}(\operatorname{int}(\mathrm{B}))))\right)$.
This proves (v).
Conversely, let us assume that (v) holds.
Let B be a β-closed subset of Y
$\left.\Rightarrow \mathrm{f} \#(\mathrm{f}-1(\operatorname{int}(\mathrm{cl}(\operatorname{int}(\mathrm{B}))))) \subseteq \mathrm{f}^{\#(\mathrm{f}}{ }^{-1}(\mathrm{~B})\right)$,
since B is α-open in Y , by (v),
we see that $\mathrm{cl}\left(\mathrm{f}^{\#}(\mathrm{f}-1(\mathrm{~B}))\right) \subseteq \mathrm{f}^{\#}\left(\mathrm{f}^{-1}(\operatorname{int}(\mathrm{cl}(\operatorname{int}(\mathrm{B}))))\right)$,
$\Rightarrow \operatorname{cl}\left(\mathrm{f}^{\#}\left(\mathrm{f}^{-1}(\mathrm{~B})\right)\right) \subseteq \mathrm{f}^{\#}\left(\mathrm{f}^{-1}(\operatorname{int}(\mathrm{cl}(\operatorname{int}(\mathrm{B}))))\right) \subseteq \mathrm{f}^{\#}\left(\mathrm{f}^{-1}(\mathrm{~B})\right)$
$\Rightarrow \mathrm{cl}\left(\mathrm{f}^{\#}\left(\mathrm{f}^{-1}(\mathrm{~B})\right)\right) \subseteq \mathrm{f}^{\#}\left(\mathrm{f}^{-1}(\mathrm{~B})\right)$, Therefore $\mathrm{f}^{\#}\left(\mathrm{f}^{-1}(\mathrm{~B})\right)$ is closed in Y .
This proves (ii).

Theorem: 5.8

Let $\mathrm{f}: \mathrm{X} \rightarrow(\mathrm{Y}, \sigma)$ be a function. Then the following are equivalent.
(i) f is β-S-continuous,
(ii) for every β-open subset V of $\left.\mathrm{Y}, \mathrm{f}^{\#(\mathrm{f}}{ }^{-1}(\mathrm{~V})\right)$ is open in Y ,
(iii) $\left.\mathrm{cl}\left(\mathrm{f}\left(\mathrm{f}^{-1}(\mathrm{~B})\right)\right) \subseteq \mathrm{f}^{-1}(\operatorname{int}(\mathrm{cl}(\operatorname{int}(\mathrm{B}))))\right)$ for every α-open subset B of Y.
(iv) $\left.\mathrm{f}^{\#}(\mathrm{f}-1(\mathrm{cl}(\operatorname{int}(\mathrm{cl}(\mathrm{B}))))) \subseteq \operatorname{int}\left(\mathrm{f}^{\#(\mathrm{f}}{ }^{-1}(\mathrm{~B})\right)\right)$ for every α-closed subset B of Y.

Proof:

(i) \Leftrightarrow (ii): follows from theorem 5.4.
(i) \Leftrightarrow (iii) :Suppose f is β-S-continuous. Let B be a α-open set in Y.
Since f is β-S-continuous, $\mathrm{f}\left(\mathrm{f}^{-1}(\operatorname{int}(\mathrm{cl}(\operatorname{int}(\mathrm{B}))))\right)$ is closed in Y,
$\Rightarrow \operatorname{cl}\left(\mathrm{f}\left(\mathrm{f}^{-1}(\operatorname{int}(\mathrm{cl}(\operatorname{int}(\mathrm{B}))))\right)\right) \subseteq \mathrm{f}\left(\mathrm{f}^{-1}(\operatorname{int}(\mathrm{cl}(\operatorname{int}(\mathrm{B}))))\right)$.
Since B is α-open in Y,
we see that $f\left(\mathrm{f}^{-1}(\mathrm{~B})\right) \subseteq \mathrm{f}\left(\mathrm{f}^{-1}(\operatorname{int}(\mathrm{cl}(\operatorname{int}(\mathrm{B}))))\right)$,
$\Rightarrow \operatorname{cl}\left(\mathrm{f}\left(\mathrm{f}^{-1}(\mathrm{~B})\right)\right) \subseteq \mathrm{cl}\left(\mathrm{f}\left(\mathrm{f}^{-1}(\operatorname{int}(\mathrm{cl}(\operatorname{int}(\mathrm{B}))))\right)\right)$,
$\Rightarrow \operatorname{cl}\left(\mathrm{f}\left(\mathrm{f}^{-1}(\mathrm{~B})\right)\right) \subseteq \operatorname{cl}\left(\mathrm{f}^{\left.\left.-\mathrm{f}^{-1}(\operatorname{int}(\mathrm{cl}(\operatorname{int}(\mathrm{B}))))\right)\right)}\right.$
$\subseteq f\left(\mathrm{f}^{-1}(\operatorname{int}(\mathrm{cl}(\operatorname{int}(\mathrm{B}))))\right) . \quad$ This proves (iii).
Conversely, suppose (iii) holds.
Let B be β-closed subset in Y
$\Rightarrow \mathrm{f}(\mathrm{f}-1(\operatorname{int}(\mathrm{cl}(\operatorname{int}(\mathrm{B}))))) \subseteq \mathrm{f}\left(\mathrm{f}^{-1}(\mathrm{~B})\right)$
Since B is α-open by applying (iii)
$\left.\Rightarrow \mathrm{cl}\left(\mathrm{f}\left(\mathrm{f}^{-1}(\mathrm{~B})\right)\right) \subseteq \mathrm{f}^{-1}(\mathrm{int}(\mathrm{cl}(\operatorname{int}(\mathrm{B}))))\right)$,
$\Rightarrow \mathrm{cl}(\mathrm{f}(\mathrm{f}-1(\mathrm{~B}))) \subseteq \mathrm{f}\left(\mathrm{f}^{-1}(\operatorname{int}(\mathrm{cl}(\operatorname{int}(\mathrm{B}))))\right) \subseteq \mathrm{f}\left(\mathrm{f}^{-1}(\mathrm{~B})\right)$
$\left.\Rightarrow \operatorname{cl}\left(\mathrm{f}\left(\mathrm{f}^{-1}(\mathrm{~B})\right)\right) \subseteq \mathrm{f}^{-1}(\mathrm{f})\right)$,
That implies $f\left(f^{-1}(B)\right)$ is closed set in Y. This completes the proof for (i) \Leftrightarrow (iii).
(ii) \Leftrightarrow (iv): Suppose (ii) holds. Let B be a α-closed subset of Y . Then $\mathrm{cl}(\operatorname{int}(\mathrm{cl}(\mathrm{B})))$ is β-open in Y .
By (ii), $\mathrm{f} \#(\mathrm{f}-1(\mathrm{cl}(\operatorname{int}(\mathrm{cl}(\mathrm{B})))))$ is open in Y ,
$\Rightarrow \mathrm{f}^{\#}\left(\mathrm{f}^{-1}(\mathrm{cl}(\operatorname{int}(\mathrm{cl}(\mathrm{B}))))\right) \subseteq \operatorname{int}\left(\mathrm{f}^{\#}(\mathrm{f}-1(\mathrm{cl}(\operatorname{int}(\mathrm{cl}(\mathrm{B})))))\right)$.
Since B is a α-closed, it follows that $\mathrm{f}^{\#}(\mathrm{f}-1(\operatorname{cl}(\operatorname{int}(\mathrm{cl}(\mathrm{B})))))$
$\subseteq \mathrm{f}^{\#}(\mathrm{f}-1(\mathrm{~B}))$
$\Rightarrow \operatorname{int}\left(\mathrm{f}^{\#}(\mathrm{f}-1(\mathrm{cl}(\operatorname{int}(\mathrm{cl}(\mathrm{B})))))\right) \subseteq \operatorname{int}\left(\mathrm{f}^{\#}(\mathrm{f}-1(\mathrm{~B}))\right)$,
$\left.\Rightarrow \mathrm{f}^{\#(\mathrm{f}}{ }^{-1}(\mathrm{cl}(\operatorname{int}(\mathrm{cl}(\mathrm{B}))))\right) \subseteq \operatorname{int}\left(\mathrm{f}^{\#}(\mathrm{f}-1(\operatorname{cl}(\operatorname{int}(\mathrm{cl}(\mathrm{B})))))\right) \subseteq$ $\operatorname{int}\left(\mathrm{f}^{\#}\left(\mathrm{f}^{-1}(\mathrm{~B})\right)\right)$,
we see that $\left.\mathrm{f}^{\#}(\mathrm{f}-1(\mathrm{cl}(\operatorname{int}(\mathrm{cl}(\mathrm{B}))))) \subseteq \operatorname{int}\left(\mathrm{f}^{\#(f-1}(\mathrm{B})\right)\right)$.
This proves (iv).
Conversely, suppose (iv) holds.
Let V be β-open in Y
$\Rightarrow \mathrm{f}^{\#}(\mathrm{f}-1(\mathrm{~V})) \subseteq \mathrm{f}^{\#}(\mathrm{f}-1(\mathrm{cl}(\operatorname{int}(\mathrm{cl}(\mathrm{V})))))$.
Since V is α-closed in Y , by using (iv), $\mathrm{f}^{\#(}\left(\mathrm{f}^{-1}(\operatorname{cl}(\operatorname{int}(\mathrm{cl}(\mathrm{V}))))\right)$
$\left.\subseteq \operatorname{int}\left(\mathrm{f}^{\#(\mathrm{f}}{ }^{-1}(\mathrm{~V})\right)\right)$,
$\Rightarrow \mathrm{f}^{\#}\left(\mathrm{f}^{-1}(\mathrm{~V})\right) \subseteq \mathrm{f}^{\#}\left(\mathrm{f}^{-1}(\mathrm{cl}(\operatorname{int}(\mathrm{cl}(\mathrm{V}))))\right) \subseteq \operatorname{int}\left(\mathrm{f}^{\#}\left(\mathrm{f}^{-1}(\mathrm{~V})\right)\right)$,
$\Rightarrow \mathrm{f}^{\#}\left(\mathrm{f}^{-1}(\mathrm{~V})\right) \subseteq \operatorname{int}\left(\mathrm{f}^{\#}\left(\mathrm{f}^{-1}(\mathrm{~V})\right)\right)$,
Then it follows that $f^{\#}\left(f^{-1}(\mathrm{~V})\right)$ is open in Y. This proves (ii).
[4] Selvi R.,Thangavelu P.,and Anitha M., ρ-Continuity Between a

6. Conclusion:

In this paper the notions of β-L-Continuity, β-MContinuity, β-R-Continuity and β-S-Continuity of a function $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ between a topological space and a non empty set are introduced. The purpose of this paper is to introduce, β - ρ-continuity. Here we discuss their links with β-open, β-closed sets. Also we establish pasting lemmas for β-R-continuous and β-S-continuous functions and obtain some characterizations for, $\beta-\rho$-continuity. We have put forward some examples to illustrate our notions

References

[1] Levine N., Semi-Open sets and Semi-Continuity in Topological Spaces, Amer. Math. Monthly, 70 (1963), 36-41.
[2] Mashhour A.S, Abdel Monsef M.E and E.I Deeb S.N., On PreContinuous and Weak Pre-Continuous mappings, Proc. Math. Phys. Soc. Egypt 53 (1982), 47-53.
[3] Navpreet singh Noorie and Rajni Bala, Some Characterizations of open, closed and continuous Mappings, International J. Math. \mathcal{E} Math. Sci., Article ID 527106, (2008),1-5.

Topological space and a Non Empty Set, where $\rho \in\{\mathrm{L}, \mathrm{M}, \mathrm{R}, \mathrm{S}\}$, International Journal of Mathematical Sciences,9(1-2)(2010), 97-104.
[5] Stone M. H., Applications of Theory of Boolean Rings to General Topology, Trans. A.M.S, 41(3),(1937), 375-481.
[6] Thangavelu P., Selvi R., On Characterization of ρ-Continuity where $\rho \in\{\mathrm{L}, \mathrm{M}, \mathrm{R}, \mathrm{S}\}$, International journal of applied mathematical analysis and applications, January - June 2012, Volume 7, page no 153-159.
[7] Njastad O., On some classes of nearly open sets, pacific.j.Math., 15(1965),961-970.
[8] Andrijevic D., semi-pre-open sets, Mat. Vesnik, 38(1)(1986), 24-32.
[9] priyadarshini M., Thangavelu P., Selvi R., On pre- ρ-Continuity where ${ }^{\rho} \in\{\mathrm{L}, \mathrm{M}, \mathrm{R}, \mathrm{S}\}$, International journal of science and Research, Volume 4, Issue 4, April 2015, page no 278-283.
[10] priyadarshini M., Selvi R., On Semi- ρ-Continuity where $\rho \in\{\mathrm{L}, \mathrm{M}, \mathrm{R}, \mathrm{S}\}$, International journal of Technical Research and applications, volume 3, Issue 3 , May 2015, page no: 221-226

