On $\beta - \rho$ -Continuity Where $\rho \in \{L, M, R, S\}$

M. Priyadarshini, R. Selvi

Abstract— The authors Selvi.R, Thangavelu.P and Anitha.M introduced the concept of ρ -continuity between a topological space and a non empty set where $\rho \in \{L, M, R, S\}$ [4]. Navpreet singh Noorie and Rajni Bala[3] introduced the concept of f# function to characterize the closed, open and continuous functions. In this paper, the concept of $\beta \cdot \rho$ -continuity is introduced and its properties are investigated and $\beta \cdot \rho$ -continuity is further characterized by using f# functions.

KEYWORDS: Multifunction, Saturated set, β - ρ -continuity, β -continuity, β -open, β -closed and continuity.

1 INTRODUCTION:

By a multifunction F: $X \rightarrow Y$, We mean a point to set correspondence from X into Y with $F(x) \neq \phi$ for all $x \in X$. Any function f: $X \rightarrow Y$ induces a multifunction f $-^{1}$ O f: X $\rightarrow \mathcal{O}$ (X). It also induces another multifunction $f \cap f^{-1}: Y \to (Y)$ provided f is surjective. The purpose of this paper is to introduce notions of β -L-Continuity, β -M-Continuity, β -R-Continuity and β -S-Continuity of a function f: $X \rightarrow Y$ between a topological space and a non empty set. Here we discuss their links with β -open and β -closed sets. Also we establish pasting lemmas for β -Rcontinuous and β -S-continuous functions and obtain some characterizations for $\beta - \rho$ -continuity. Navpreet singh Noorie and Rajni Bala [3] introduced the concept of f# function to characterize the closed, open and continuous functions. The authors [6] characterized ρ -continuity by using f[#] functions. In an analog way $\beta - \rho$ -continuity is characterized in this paper.

2 PRELIMINARIES:

The following definitions and results that are due to the authors [4] and Navpreet singh Noorie and Rajni Bala [3] will be useful in sequel.

Definition: 2.1

Let f: $(x, \tau) \rightarrow Y$ be a function. Then f is

- (i) L-Continuous if f⁻¹(f (A)) is open in X for every open set A in X. [4]
- (ii) M-Continuous if f ⁻¹(f (A)) is closed in X for every closed set A in X. [4]

Definition: 2.2

Let f: X \rightarrow (Y, σ) be a function. Then f is

- (i) R-Continuous if f (f -1(B)) is open in Y for every open set B in Y. [4]
- (ii) S-Continuous if f (f -1(B)) is closed in Y for every closed set B in Y. [4]

Definition 2.3:

Let $f: X \rightarrow Y$ be any map and E be any subset of X. then the following hold.

(i) $f^{\#}(E) = \{y \in Y: f^{-1}(y) \subseteq E\}$; (ii) $E^{\#} = f^{-1}(f^{\#}(E))$. [3]

Lemma 2.4:

Let E be a subset of X and let f: $X \rightarrow Y$ be a function. Then the following hold.

(i) $f^{\#}(E) = Y \setminus f(X \setminus E)$; (ii) $f(E) = Y \setminus f^{\#}(X \setminus E)$. [3]

Lemma 2.5:

Let E be a subset of X and let f: $X \rightarrow Y$ be a function. Then the following hold.

(i) $f^{-1}(f^{\#}(E)) = X \setminus f^{-1}(f(X \setminus E));$ (ii) $f^{-1}(f(E)) = X \setminus f^{-1}(f^{\#}(X \setminus E))$. [6]

Lemma 2.6:

Let E be a subset of X and let f: $X \rightarrow Y$ be a function. Then the following hold.

(i) $f^{\#}(f^{-1}(E)) = Y \setminus f(f^{-1}(Y \setminus E))$; (ii) $f(f^{-1}(E)) = Y \setminus f^{\#}(f^{-1}(Y \setminus E))$. [6]

Definition 2.7:

Let f: $X \rightarrow Y$, $A \subseteq X$ and $B \subseteq Y$. we say that A is f-saturated if $f^{-1}(f(A)) \subseteq A$ and B is f^{-1} -saturated if $f(f^{-1}(B)) \subseteq B$. Equivalently A is f-saturated if and only if $f^{-1}(f(A))=A$, and B is f^{-1} -saturated if and only if $f(f^{-1}(B))=B$.

Definition 2.8:

Let A be a subset of a topological space (X, ${\mathcal T}$). Then A is called

(i) Semi-open if $A \subseteq cl(int(A))$ and semi-closed if $int(cl(A)) \subseteq A$; [1].

(ii) Pre-open if $A \subseteq int(cl(A))$ and pre-closed if $cl(int(A)) \subseteq A$; [2].

(iii) α -open if $A \subseteq int(cl(int(A)))$ and α -closed

if $cl(int(cl(A))) \subseteq A$; [7].

(iv) semi-pre-open or β -open if A \subseteq cl(int(cl(A))) and semi-pre-closed or β -closed if int(cl(int(A))) \subseteq A; [8].

Definition 2.9:

Let f: $(X, t) \rightarrow (Y, \sigma)$ be a function. Then f is β -continuous if f⁻¹(B) is open in X for every β -open set B in Y. [8]

Definition: 2.10:

Let f: $(X, t) \rightarrow (Y, \sigma)$ be a function. Then f is β -open (resp. β -closed) if f(A) is β -open(resp. β -closed) in Y for every β -open(resp. β -closed) set A in X.

3. $\beta - \rho$ -Continuity Where $\rho \in \{L, M, R, S\}$

Definition: 3.1

Let f: $(X, \mathcal{I}) \rightarrow Y$ be a function. Then f is

(i) β -L-Continuous if f ⁻¹(f (A)) is open in X for every β -open set A in X.

(ii) β -M-Continuous if f⁻¹(f (A)) is closed in X for every β -closed set A in X.

Definition: 3.2

Let f: X \rightarrow (Y, σ) be a function. Then f is

(i) β -R-Continuous if f (f ⁻¹(B)) is open in Y for every β -open set B in Y.

(ii) β -S-Continuous if f (f ⁻¹(B)) is closed in Y for every β -closed set B in Y.

Example: 3.3

Let X = {a, b, c, d} and Y = {1, 2, 3, 4}. Let τ = { Φ , X, {a}, {b}, {a, b}, {a, b, c} }. Let f: (X, τ) \rightarrow Y defined by f(a)=1, f(b)=2, f(c)=3, f(d)=4. Then f is β -L-Continuous and β -M-Continuous.

Example: 3.4

Let X = {a, b, c, d} and Y = {1, 2, 3, 4}. Let $\sigma = \{ \Phi, Y, \{1\}, \{2\}, \{1,2\}, \{1,2,3\} \}$. Let g : X \rightarrow (Y, σ) defined by g(a)=1, g(b)=2, g(c)=3, g(d)=4. Then g is β -R-Continuous and β -S-Continuous.

Definition: 3.5

Let f: $(X, \mathcal{I}) \rightarrow (Y, \sigma)$ be a function, Then f is (i) β -LR-Continuous, if it is both β -L-Continuous and β -R-Continuous.

(ii) β -LS -Continuous, if it is both β -L-Continuous and β -S-Continuous.

(iii) β -MR-Continuous, if it is both β -M-Continuous and β -R-Continuous.

(iv) β -MS-Continuous, if it is both β -M-Continuous and β -S-Continuous.

Theorem: 3.6

(i) Every injective function $f:(X, \mathcal{T}) \rightarrow (Y, \sigma)$ is β -L-Continuous and β -M-Continuous.

(ii) Every surjective function $f:(X, t) \rightarrow (Y, \sigma)$ is β -R-Continuous and β -S-Continuous.

(iii) Any constant function $f:(X, t) \rightarrow (Y, \sigma)$ is β -R-Continuous and β -S-Continuous.

Proof:

(i) Let f: $(X, t) \rightarrow (Y, \sigma)$ be injective function. Then β -L-Continuity and β -M-Continuity follow from the fact that f ¹(f(A))=A. This proves (i).

(ii) Let f: $(X, \tilde{\iota}) \rightarrow (Y, \sigma)$ be surjective function. Since f is surjective, f (f -1(B))=B for every subset B of Y. Then f is both β -R-Continuous and β -S-Continuous. This proves (ii).

(iii)Suppose $f(x) = y_0$ for every x in X. Then f (f (f - 1(B)) = Y if $y_0 \in B$ and f (f $(f - 1(B)) = \Phi$, if $y_0 \in Y \setminus B$. This proves (iii).

Corollary: 3.7

If f: $(X, \tau) \rightarrow (Y, \sigma)$ be bijective function then f is β -L-Continuous, β -M-Continuous, β -R-Continuous and β -S-Continuous.

Theorem: 3.8

Let f: $(X, t) \rightarrow (Y, \sigma)$.

(i) If f is L-Continuous (resp. M-Continuous) then it is β -L-Continuous (resp. β -M-Continuous).

(ii) If f is R-Continuous (resp. S-Continuous) then it is β -R-Continuous (resp. β -S-Continuous).

Proof:

(i) Let $A \subseteq X$ be β -open (resp. β -closed) in X. Since every β -open (resp. β -closed) set is open (resp. closed) and since f is L-continuous (resp. M-continuous) \Rightarrow f⁻¹(f(A)) is open (resp. closed) in X. Therefore f is β -L-Continuous (resp. β -M-Continuous).

(ii) Let $B \subseteq Y$ be β -open (resp. β -closed) in Y. since every β -open (resp. β -closed) set is open (resp. closed) and since f is R-continuous (resp. S-continuous) \Rightarrow f (f ⁻¹(B)) is open (resp. closed) in Y. Therefore f is β -R-Continuous (resp. β -S-Continuous).

Theorem: 3.9

Let f: $(X, l) \rightarrow Y$ be β -L-Continuous. Then cl(int(cl(A))) is f-saturated whenever A is f-saturated and α -closed. **Proof:**

Let $A \subseteq X$ be f-saturated. Since f is β -L-Continuous $\Rightarrow A$ is β -open set in $X \Rightarrow A \subseteq$ cl(int(cl(A))). And since A is α -closed \Rightarrow cl(int(cl(A))) $\subseteq A$. Therefore cl(int(cl(A)))=A. Since A is f-saturated \Rightarrow f $^{-1}(f(A)) = A$. That implies cl(int(cl(A)))=f^{-1}(f(cl(int(cl(A))))). Therefore Hence cl(int(cl(A))) is f-saturated whenever A is f-saturated and α -closed.

Corollary: 3.10

Let f: $(X, \tau) \rightarrow Y$ be β -L-Continuous. Then cl(int(cl(f -1(B)))) is f-saturated for every subset B of Y. **Proof:**

Let $B \subseteq Y$. we know that $f(f^{-1}(B)) \subseteq B$, Then $f^{-1}(f(f^{-1}(B))) \subseteq f^{-1}(B)$. Also $f^{-1}(B) \subseteq f^{-1}(f(f^{-1}(B))) \subseteq f^{-1}(B)$. So that $f^{-1}(f(f^{-1}(B))) = f^{-1}(B)$. This proves that $f^{-1}(B)$ is f-saturated, and hence by using theorem: 3.9, $cl(int(cl(f^{-1}(B))))$ is f-saturated.

Theorem: 3.11

Let f: $(X, \mathcal{I}) \rightarrow Y$ be β -M-Continuous. Then

 $\mathsf{int}(\mathsf{cl}(\mathsf{int}(\mathsf{A})))$ is f-saturated whenever A is f-saturated and α -open.

Proof:

Let $A \subseteq X$ be f-saturated. Since f is β -M-Continu \mathfrak{P} saturated \Rightarrow A is β -closed set in $X \Rightarrow int(cl(int(A))) \subseteq A$ and since

A is α -open \Rightarrow A \subseteq int(cl(int(A))). (ii) Therefore int(cl(int(A))) = A. Since A is f-saturated \Rightarrow f⁻¹(f(A)) = A.

That implies $int(cl(int(A))) = f^{-1}(f(int(cl(int(A)))))$. Hence int(cl(int(A))) is f-saturated whenever A is f-saturated and α -open.

Theorem: 3.12

Let f: $X \rightarrow (Y, \sigma)$ be β -R-Continuous. Then cl(int(cl(B))) is f⁻¹ – saturated whenever B is f⁻¹ –saturated and α -closed.

Proof:

Let $B \subseteq Y$ be f⁻¹ –saturated.

Since f is β -R-Continuous \Rightarrow B is β -open set in Y,

 \Rightarrow cl(int(cl(B))) \supseteq B, and since B is β -closed

 $\Rightarrow cl(int(cl(B))) \subseteq B, \text{ Therefore } cl(int(cl(B)))=B, \quad (i)$ since B is f⁻¹-saturated $\Rightarrow f(f^{-1}(B)) = B,$

which implies that $f(f^{-1}(cl(int(cl(B)))))=cl(int(cl(B)))$, (ii) Therefore hence cl(int(cl(B))) is f^{-1} -saturated whenever B is f^{-1} -saturated and α -closed.

Theorem: 3.13

Let f: X \rightarrow (Y, σ) be β -S-Continuous Then int(cl(int(B))) is f ⁻¹- saturated whenever B is f ⁻¹-saturated and α -open.

Proof:

Let $B \subseteq Y$ be f⁻¹-saturated. Since f is β -S-Continuous \Rightarrow B is β -closed set in $Y \Rightarrow$ int(cl(int(B))) \subseteq B and

since B is α -open \Rightarrow int(cl(int(B))) \supseteq B,

Therefore int(cl(int(B)))=B, since B is f⁻¹-saturated, $f(f^{-1}(B)) = B$.

Which implies that $int(cl(int(B)))=f(f^{-1}(int(cl(int(B)))))$, Therefore hence int(cl(int(B))) is f^{-1} -saturated whenever B is f^{-1} -saturated and α -open.

Corollary: 3.14

Let f: $(X, l) \rightarrow (Y, \sigma)$ be β -S-Continuous Then int(cl(int(f(A)))) is f⁻¹ – saturated for every subset A of X.

Proof:

Let $A \subseteq X$. We know that $f^{-1}(f(A)) \supseteq A$, Then $f(f^{-1}(f(A))) \supseteq f(A)$, Also $f(A) \supseteq f(f^{-1}(f(A))) \supseteq f(A)$, So that $f(f^{-1}(f(A))) = f(A)$. This proves that hence by using (theorem 3.13) int(cl(int(f(A)))) is f^{-1} - saturated.

4 PROPERTIES

In this section we prove certain theorems related with β -open and β -closed functions.

Theorem: 4.1

Let f: $(X, l) \rightarrow (Y, \sigma)$ be β -open and β -Continuous, Then f is β -L-Continuous.

Let f: $(X, \mathcal{I}) \rightarrow (Y, \sigma)$ be open and β -Continuous, Then f is β -R-Continuous.

Proof:

(i) Let $A \subseteq X$ be β -open in X. Let f: $(X, \tau) \rightarrow (Y, \sigma)$ be β -open and β -Continuous, since f is β -open, $\Rightarrow f(A)$ is β -open in Y and since f is β -continuous, $\Rightarrow f^{-1}(f(A))$ is open in X. Therefore f is β -L Continuous, This proves (i). (ii) Let $B \subseteq Y$ be β -open in Y. Let f: $(X, \tau) \rightarrow (Y, \sigma)$ be open and β - Continuous, since f is β -continuous $\Rightarrow f^{-1}(B)$ is open in X, and since f is open $\Rightarrow f(f^{-1}(B))$ is open in Y, Therefore f is β -R Continuous, This proves (ii).

Theorem: 4.2

Let f: $(X, \tau) \rightarrow (Y, \sigma)$ be β -closed and β -Continuous, Then f is β -M-Continuous.

Let f: $(X, t) \rightarrow (Y, \sigma)$ be closed and β -Continuous, Then f is β -S-Continuous.

Proof:

(i) Let $A \subseteq X$ be β -closed in X. Let $f: (X, \tau) \to (Y, \sigma)$ be β -closed and β -Continuous, since f is β -closed $\Rightarrow f(A)$ is β -closed in Y and since f is β -continuous $\Rightarrow f^{-1}(f(A))$ is closed in X. Therefore f is β -M Continuous. This proves (i). (ii) Let $B \subseteq Y$ be β -closed in Y. Let $f: (X, \tau) \to (Y, \sigma)$ be closed and β -Continuous, since f is β -continuous $\Rightarrow f^{-1}(B)$ is closed in X and since f is closed $\Rightarrow f(f^{-1}(B))$ is closed in Y. Therefore f is β -S Continuous, This proves (ii). International Journal of Scientific & Engineering Research, Volume 6, Issue 5, May-2015 ISSN 2229-5518

Theorem: 4.3

Let X be a topological space. If A is an β -open subspace of X, the inclusion function j: A \rightarrow X is β -L-continuous and β -R-continuous. If A is an β -closed subspace of X, the inclusion function j: A \rightarrow X is β -M-continuous and β -S-continuous.

Proof:

(i) Suppose A is an β -open subspace of X. Let j: A \rightarrow X be an inclusion function. Let U \subset X be β -open in X then j (j⁻¹(U)) = j (U \cap A) = U \cap A Which is open in X. Hence j is β -R-continuous. Now, let U \subseteq A be β -open in A. Then j⁻¹(j(U)) = j⁻¹(U) = U which is open in A. Hence j is β -L-continuous, this proves (i).

(ii) Suppose A is an β -closed subspace of X. Let j: A \rightarrow X be an inclusion function. Let U \subset X be β -closed in X then j (j⁻¹(U)) = j (U \cap A) = U \cap A, Which is closed in X.

Hence j is β -S-continuous. Now, let $U \subseteq A$ be β -closed in A. Then j⁻¹(j (U)) = j⁻¹(U) =U which is closed in A. Hence j is β -M-continuous, this proves (ii).

Theorem: 4.4

Let g: $Y \rightarrow Z$ and f: $X \rightarrow Y$ be any two functions. Then the following hold.

(i) If g: $Y \rightarrow Z$ is β -L-continuous (resp. β -M-continuous) and f: $X \rightarrow Y$ is β -open (resp. β -closed) and continuous, then g O f: $X \rightarrow Z$ is β -L-continuous

(resp. β -M-continuous)

(ii) If g: $Y \rightarrow Z$ is open (resp. closed) and β -continuous and f: $X \rightarrow Y$ is R-continuous (resp. S-continuous), then g O f is β -R-continuous (resp. β -S-continuous).

Proof:

(i) Suppose g is β -L-continuous (resp. β -M continuous) and f is β -open (resp. β -closed) and continuous. Let A be β -open (resp. β -closed) in X.

Then $(g \cap f)^{-1} \cdot (g \cap f)(A) = f^{-1}(g^{-1}(g(f(A))))$. Since f is β -open (resp. β -closed) \Rightarrow f (A) is β -open (resp. β -closed) in Y. Since g is β -L-continuous (resp. β -M-continuous) \Rightarrow g⁻¹(g(f(A))) is open (resp. closed) in Y. Since f is continuous \Rightarrow f⁻¹(g⁻¹(g(f(A)))) is open (resp. β -closed) in X. Therefore, g \cap f is β -L-continuous (resp. β -M-continuous). This proves (i). (ii) Let f: X \rightarrow Y be R-continuous (resp. S-continuous) and

g: $Y \rightarrow Z$ be open (resp. closed) and β -continuous. Let B be β -open (resp. β -closed) in Z. Then

(g O f) (g O f)⁻¹(B) = (g O f) (f ⁻¹(g⁻¹(B))) = g (f (f ⁻¹(g⁻¹(B)))). Since g is β -continuous g⁻¹(B) is open (resp. closed) in Y. Since f is R-continuous (resp. S-continuous) \Rightarrow f(f⁻¹(g⁻¹(B))) is open (resp. closed) in Y. Since g is open (resp. closed) \Rightarrow g(f(f ⁻¹(g⁻¹(B)))) is open (resp. closed) in Z. Therefore, g O f is β -R-continuous (resp. β -S-continuous). This proves (ii).

Theorem: 4.5

If f: $X \rightarrow Y$ is β -L-continuous and if A is an open subspace of X, then the restriction of f to A is β -L-continuous.

Proof:

Let h = f/A. Then h = f O j, where j is the inclusion map j: $A \rightarrow X$ since j is open and continuous and since f: $X \rightarrow Y$ is β -L-continuous, using theorem (4.4 (i)) \Rightarrow h is β -L-continuous.

Theorem: 4.6

If f: $X \rightarrow Y$ is β -M-continuous and if A is a closed subspace of X, then the restriction of f to A is β -M-continuous.

Proof:

Let h = f/A. Then h = f O j, where j is the inclusion map j: $A \rightarrow X$ since j is closed and continuous and since f: $X \rightarrow Y$ is β -M-continuous, using theorem (4.4 (i)),

 \Rightarrow h is β -M-continuous.

Theorem: 4.7

Let f: $X \rightarrow Y$ be β -R-continuous. Let f(x) $\subseteq Z \subseteq Y$ and f(X) be open in Z. Let h: $X \rightarrow Z$ be obtained by from f by restricting the co-domain of f to Z. Then h is β -R-continuous.

Proof:

Clearly h = j O f where $j: f(x) \rightarrow Z$ is an inclusion map. Since f(X) is open in Z, the inclusion map j is both open and β -continuous. Then by applying theorem 4.4(ii), \Rightarrow h is β -R-continuous.

Theorem: 4.8

Let f: $X \rightarrow Y$ be β -S-continuous. Let f(x) $\subseteq Z \subseteq Y$ and f(X) be closed in Z. Let h: $X \rightarrow Z$ be obtained by from f by restricting the co-domain of f to Z. Then h is β -S-continuous.

Proof:

Clearly h = j O f where j: $f(x) \rightarrow Z$ is an inclusion map. Since f(X) is closed in *Z*, the inclusion map j is both closed and β -continuous. Then by applying theorem 4.4(ii) \Rightarrow h is β -S-continuous.

Now we establish the pasting lemmas for β -R-continuous and β -S-continuous functions.

IJSER © 2015 http://www.ijser.org Let $X=A \cup B$. Let $f: A \to (Y, \sigma)$ and $g: B \to (Y, \sigma)$ be β -R-continuous (res. β -S-continuous) f(x)=g(x) for every $x \in A \cap B$, then f and g combined to give a β -R-continuous (res. β -S-continuous) function h: $X \to Y$ defined by h(x)=f(x) if $x \in A$, and h(x)=g(x) if $x \in B$. **Proof:**

Let C be a β -open (res. β -closed) set in Y. Now hh⁻¹(C) = h (f⁻¹(C) \bigcup g⁻¹(C)) = h (f⁻¹(C)) \bigcup h (g⁻¹(C)) = f (f⁻¹(C)) \bigcup g (g⁻¹(C)). Since f is β -R-continuous (res. β -S-continuous), f (f⁻¹(C)) is open (resp. closed) in Y and Since g is β -R-continuous (res. β -S-continuous), g (g⁻¹(C)) is open (resp. closed) in Y. Therefore, hh⁻¹(C) is open (resp. closed) in Y. Hence h is β -R-continuous (resp. β -S-continuous).

CHARACTERIZATIONS

Theorem: 5.1

A function f: $X \rightarrow Y$ is β -L-continuous if and only if f⁻¹(f[#](A)) is closed in X for every β -closed subset A of X. **Proof:**

Suppose f is β -L-continuous. Let A be β -closed in X. Then G = X / A is β -open in X. Since f is β -L-continuous and since G is β -open in X \Longrightarrow f ⁻¹(f(G)) is open in X. By applying lemma ((2.5)-(i)) \Longrightarrow f ⁻¹(f[#](A)) = X \ f ⁻¹(f(X\A)) = X \ f ⁻¹(f(G)). That implies f ⁻¹(f[#](A)) is closed in X. Conversely, we assume that f ⁻¹(f[#](A)) is closed in X for every β -closed subset A of X. Let G be a β -open in X. By our assumption, f ⁻¹(f[#](A)) is closed in X, where A = X\G. By using lemma ((2.5)-(ii)) \Rightarrow f ⁻¹(f(G)) = X \ f ⁻¹(f[#](X\G)) = X \ f ⁻¹(f[#](A)). That implies f ⁻¹(f(G)) is open in X. Therefore, hence f is β -L-continuous.

Theorem: 5.2

A function f: $X \rightarrow Y$ is β -M-continuous if and only if f ⁻¹(f [#](G)) is open in X for every β -open subset G of X.

Proof:

Suppose f is β -M-continuous. Let G be β -open in X. Then A = X \G is β -closed in X. Since f is β -M-continuous and since A is β -closed in X \Rightarrow f⁻¹(f (A)) is closed in X. By applying lemma ((2.5)-(i)) \Rightarrow f⁻¹(f[#](G)) = X \ f¹(f(X\G)) = X \ f¹(f(A)). That implies f⁻¹(f[#](G)) is open in X. Conversely, we assume that f⁻¹(f[#](G)) is open in X for every β -open subset G of X. Let A be a β -closed in X. By our assumption f⁻¹(f[#](G)) is open in X where G = X \ A

By our assumption, $f^{-1}(f^{*}(G))$ is open in X, where $G = X \setminus A$. By using lemma ((2.5)-(ii)) \Longrightarrow $f^{-1}(f(A)) = X \setminus f^{-1}(f^{*}(X \setminus A)) = X \setminus f^{-1}(f^{*}(G))$. That implies $f^{-1}(f(A))$ is open in X. Therefore, hence f is β -M-continuous.

Theorem: 5.3

A function f: $X \rightarrow Y$ is β -R-continuous if and only if f * (f -1(B)) is closed in Y for every β -closed subset B of Y.

Proof:

Suppose f is β -R-continuous. Let B be β -closed in Y. Then G=Y\B is β -open in Y. Since f is β -R-continuous and since G is β -open in Y \Rightarrow f (f ⁻¹(G)) is open in Y. Now by using lemma ((2.6)(i)) \Rightarrow f[#](f ⁻¹(B)) = Y \ f(f ⁻¹(Y\B)) = Y \ f(f ⁻¹(G)). That implies f[#] (f ⁻¹(B)) is closed in Y. Conversely, we assume that f [#] (f ⁻¹(B)) is closed in Y for every β -closed subset B of Y. Let G be β -open in Y. Let B = Y \G. By our assumption, f [#] (f ⁻¹(B)) is closed in Y. By lemma ((2.6)(ii)) \Rightarrow f(f⁻¹(G))=Y \ (f[#](f ⁻¹(Y\G)))=Y \ f[#](f ⁻¹(B)), This proves that f(f ⁻¹(G)) is open in Y. Therefore, hence f is β -R-continuous.

Theorem: 5.4

The function f: $X \rightarrow Y$ is β -S-continuous if and only if f *(f -1(G)) is open in Y for every β -open subset G of Y. **Proof:**

Suppose f is β -S-continuous. Let G be β -open in Y. Then B=Y\G is β -closed in Y. Since f is β -S-continuous and since B is β -closed in Y \Rightarrow f (f⁻¹(B)) is open in Y.

Now by using lemma $((2.6)(i)) \Longrightarrow f^{\#}(f^{-1}(G)) = Y \setminus f(f^{-1}(Y \setminus G))$ = Y\ f(f^{-1}(B)). That implies f # (f^{-1}(G)) is open in Y. Conversely, we assume that f # (f^{-1}(G)) is open in Y for every β -open subset G of Y. Let B be β -closed in Y.

Let $G = Y \setminus B$. By our assumption, $f^{\#}(f^{-1}(G))$ is open in Y. By lemma ((2.6)(ii))

 $\Longrightarrow f(f^{-1}(B))=Y \setminus (f^{\#}(f^{-1}(Y \setminus B)))=Y \setminus f^{\#}(f^{-1}(G)),$

This proves that $f(f^{-1}(B))$ is closed in Y. Therefore, hence f is β -S-continuous.

Theorem: 5.5

Let f: $(X, \mathcal{I}) \rightarrow Y$ be a function . Then the following are equivalent.

(i) f is β -L-continuous,

(ii) for every β -closed subset A of X, f⁻¹(f[#](A) is closed in X,

(iii) for every $x \in X$ and for every β -open set U in X with

 $f(x) \in f(U)$ there is an open set G in X with $x \in G$ and $f(G) \subseteq f(U)$,

(iv) f -1(f(cl(int(cl(A))))) \subseteq int(f -1(f(A))) for every α -closed subset A of X.

(v) cl (f -1(f#(A))) \subseteq f -1(f#(int(cl(int(A)))) for every α -open subset A of X.

Proof:

(i) ⇔ (ii): follows from theorem 5.1.
(i) ⇔ (iii): Suppose f is β-L-continuous.

International Journal of Scientific & Engineering Research, Volume 6, Issue 5, May-2015 ISSN 2229-5518

Let U be β -open set in X such that $f(x) \in f(U)$. Since f is β -L-continuous, f⁻¹(f (U)) is open in X. Since $x \in f^{-1}(f(U))$ there is an open set G in X such that $x \in G \subseteq f^{-1}(f(U)) \Longrightarrow f(G) - f(f^{-1}(f(U))) \subseteq f(U)$. This proves (iii). Conversely, suppose (iii) holds. Let U be β -open set in X and $x \in f^{-1}(f(U))$. Then $f(x) \in f(U)$. By using (iii), there is an open set G in X containing x such that $f(G) \subset f(U)$. Therefore $x \in G \subset f^{-1}(f(G)) \subset f^{-1}(f(U)) \Longrightarrow f^{-1}(f(U))$ is open set in X. This completes the proof for (i) \Leftrightarrow (iii). (i) \Leftrightarrow (iv): Suppose f is β -L-continuous. Let A be a α -closed subset of X. Then cl(int(cl(A))) is β -open set in X. By the β -L-continuity of f, we see that f⁻¹(f(cl(int(cl(A))))) is open in X. \Rightarrow f⁻¹ (f (cl(int(cl(A))))) \subseteq int(f⁻¹ (f (cl(int(cl(A)))))). since A is α -closed in X, We have $f^{-1}(f(cl(int(cl(A))))) \subseteq f^{-1}(f(A))$, \Rightarrow int(f -1(f(cl(int(cl(A)))))) \subseteq int(f -1(f(A))), It follows that $f^{-1}(f(cl(int(cl(A))))) \subset int(f^{-1}(f(A)))$. This proves (iv). Conversely, We assume that (iv) holds. Let U be β -open set in X \Rightarrow f⁻¹(f(U)) \subset f⁻¹(f(cl(int(cl(U))))), since U is α -closed by applying (iv) we get $f^{-1}(f(cl(int(cl(U))))) \subseteq int(f^{-1}(f(U)))$, Therefore $f^{-1}(f(U)) \subseteq int(f^{-1}(f(U)))$ and hence $f^{-1}(f(U))$ is open in X. This proves that f is β -L-continuous. (ii) \Leftrightarrow (v): Suppose (ii) holds. Let A be a α -open subset of By using (ii),f⁻¹(f #(int(cl(int(A)))) is closed in X X. $\Rightarrow cl(f^{-1}(f^{*}(int(cl(int(A)))))) = f^{-1}(f^{*}(int(cl(int(A))))).$ Since A is α -open \Rightarrow f⁻¹(f(#(A))) \subseteq f⁻¹(f#(int(cl(int(A))))), \Rightarrow cl(f -1(f(#(A)))) \subset cl(f -1(f#(int(cl(int(A)))))) it follows that $cl(f^{-1}(f(\#(A)))) \subset f^{-1}(f\#(int(cl(int(A))))))$, This proves (v), Conversely, let us assume that (v) holds. Let A be a β -closed subset of X \Rightarrow f -1(f#(int(cl(int(A))))) \subseteq f -1(f#(A)), since A is α -open by (v), we see that $cl(f^{-1}(f^{\#}(A))) \subseteq f^{-1}(f^{\#}(int(cl(int(A))))))$, $cl(f^{-1}(f^{\#}(A))) \subseteq f^{-1}(f^{\#}(A))$, Therefore $f^{-1}(f^{\#}(A))$ is closed in X. This proves (ii).

Theorem: 5.6

Let f: $(X, \mathcal{I}) \rightarrow Y$ be a function. Then the following are equivalent.

(i) f is β -M-continuous,

(ii) for every β -open subset G of X, f⁻¹(f[#](G) is open in X, (iii) cl (f -1(f(A))) \subseteq f -1(f(int(cl(int(A))))) for every α -open subset A of X.

(iv) f⁻¹(f[#](cl(int(cl(A))))) \subseteq int(f⁻¹(f[#](A))) for every α closed subset A of X.

Proof: (i) \Leftrightarrow (ii): follows from theorem 5.2. (i) \Leftrightarrow (iii): Suppose f is β -M-continuous. Let A be a α -open set in X. int(cl(int(A))) is β -closed in X, Since f is β -M-continuous, f⁻¹(f (int(cl(int(A))))) is closed in $X_{t} \Longrightarrow cl(f^{-1}(f(int(cl(int(A)))))) = f^{-1}(f(int(cl(int(A))))))$ Since A is α -open in X we see that $f^{-1}(f(A)) \subseteq f^{-1}(f(int(cl(int(A))))))$, \Rightarrow cl(f -1(f(A))) \subseteq cl(f -1(f(int(cl(int(A))))) = $f^{-1}(f(int(cl(int(A)))))$. \Rightarrow cl(f -1(f(A))) \subset f -1(f(int(cl(int(A))))). This proves (iii). Conversely, suppose (iii) holds. Let A be β -closed subset in X \Rightarrow f⁻¹(f(int(cl(int(A))))) \subseteq f⁻¹(f(A)), Since A is α -open by applying (iii), $cl(f^{-1}(f(A))) \subseteq f^{-1}(f(int(cl(int(A))))),$ \Rightarrow cl(f⁻¹(f(A))) \subset f⁻¹(f(A)) That implies f⁻¹(f(A)) is closed set in X. This completes the proof for (i) \Leftrightarrow (iii). (ii) \Leftrightarrow (iv): Suppose (ii) holds. Let A be a α -closed subset of X. Then cl(int(cl(A))) is β -open in X. By (ii), f -1(f #(cl(int(cl(A))))) is open in X, \Rightarrow f⁻¹(f #(cl(int(cl(A))))) \subset int(f ⁻¹(f #(cl(int(cl(A))))), Since A is α -closed \Rightarrow f⁻¹(f *(cl(int(cl(A))))) \subset f⁻¹(f *(A)), \Rightarrow int(f -1(f #(cl(int(cl(A))))) \subset int(f -1(f #(A))), we see that $f^{-1}(f # (cl(int(cl(A))))) \subset int(f^{-1}(f # (A))).$ This proves (iv). Conversely, suppose (iv) holds. Let G be β -open in X, \Rightarrow f⁻¹(f #(G)) \subseteq f⁻¹(f #(cl(int(cl(G))))). Since G is α -closed in X, by using (iv) \Rightarrow f ⁻¹(f [#](cl(int(cl(G))))) \subseteq int(f ⁻¹(f [#](G))). $\Rightarrow f^{-1}(f^{*}(G)) \subseteq f^{-1}(f^{*}(cl(int(cl(G))))) \subseteq int(f^{-1}(f^{*}(G))),$ \Rightarrow f⁻¹(f[#](G)) \subseteq int(f⁻¹(f[#](G))), Then it follows that $f^{-1}(f^{\#}(G))$ is open in X. This proves (ii).

Theorem: 5.7

Let f: X \rightarrow (Y, σ) be a function and σ be a space with a base consisting of f -1saturated open sets. Then the following are equivalent. (i) f is β -R-continuous,

(ii) for every β -closed subset B of X, f *(f -1(B) is closed in Y,

(iii) for every $x \in X$ and for every β -open set V in Y with

 $x \in f^{-1}(V)$ there is an open set G in Y with $f(x) \in G$ and $f^{-1}(G) \subset f^{-1}(V),$

(iv) $f(f^{-1}(cl(int(cl(B))))) \subseteq int(f(f^{-1}(B)))$ for every α -closed subset B of Y.

(v) cl(f *(f -1(B))) \subseteq f *(f -1(int(cl(int(B))))) for every α -open subset B of Y.

Proof:

(i) \Leftrightarrow (ii): follows from theorem 5.3.

International Journal of Scientific & Engineering Research, Volume 6, Issue 5, May-2015 ISSN 2229-5518

(i) \Leftrightarrow (iii): Suppose f is β -R-continuous. Let V be a β -open set in Y such that $x \in f^{-1}(V)$. Since f is β -R-continuous, f (f -1(V)) is open in Y. $f(x) \in f(f^{-1}(V))$ there is an open set G in Y such that $f(x) \in G \subseteq f(f^{-1}(V)).$ That implies $x \in f^{-1}(G) \subseteq f^{-1}(f(f^{-1}(V))) \in f^{-1}(V)$. This proves (iii). Conversely, suppose (iii) holds. Let V be β -open in Y and $y \in f(f^{-1}(G))$, Then y=f(x) for some $x \in f^{-1}(V)$. By using (iii) there is an open set G in Y containing f(x) such that $f^{-1}(G) \subseteq f^{-1}(V)$. We choose G to a f^{-1} -saturated in Y. Then G= f (f -1(G)) \subset f(f -1(V)). This proves that $f(f^{-1}(V))$ is open in Y. This proves that f is β -R-continuous. (i) \Leftrightarrow (iv): Suppose f is β -R-continuous. Let B be α -closed subset in Y. Then cl(int(cl(B))) is β -open set in Y. By the β -R-continuity of f, \Rightarrow f (f ⁻¹(cl(int(cl(B))))) is open in Y $\Rightarrow f(f^{-1}(cl(int(cl(B))))) \subseteq int(f(f^{-1}(cl(int(cl(B)))))).$ Since B is α -closed in Y \Rightarrow f (f -1(cl(int(cl(B))))) \subseteq f(f -1(B)), \Rightarrow int(f (f -1(cl(int(cl(B)))))) \subseteq int(f(f -1(B))). Then It follows that $f(f^{-1}(cl(int(cl(B))))) \subseteq int(f(f^{-1}(B)))$. This proves (iv). Conversely, we assume that (iv) holds. Let B be β -open set in Y \Rightarrow f (f -1(B)) \subseteq f (f -1(cl(int(cl(B))))). Since B is α -closed by applying (iv), we get $f(f^{-1}(cl(int(cl(B))))) \subseteq int(f(f^{-1}(B)))$ Therefore $f(f^{-1}(B)) \subseteq int(f(f^{-1}(B)))$ and hence $f(f^{-1}(B))$ is open in Y. This proves that f is β -R-continuous. (ii) \Leftrightarrow (v): Suppose (ii) holds. Let B be a α -open subset of Y. By using (ii) f # (f -1(int(cl(int(B))))) is closed in Y. \Rightarrow cl(f * (f -1(int(cl(int (B)))))) = f * (f -1(int(cl(int(B))))) Since B is α -open in Y, we see that, $f #(f -1(B)) \subseteq f #(f -1(int(cl(int(B)))))$, \Rightarrow cl(f *(f -1(B))) \subset cl(f *(f -1(int(cl(int(B)))))), it follows that $cl(f *(f -1(B))) \subseteq f *(f -1(int(cl(int(B))))).$ This proves (v). Conversely, let us assume that (v) holds. Let B be a β -closed subset of Y \Rightarrow f #(f -1(int(cl(int(B))))) \subset f #(f -1(B)), since B is α -open in Y, by (v), we see that $cl(f *(f -1(B))) \subseteq f *(f -1(int(cl(int(B)))))$ \Rightarrow cl(f[#](f⁻¹(B))) \subseteq f[#](f⁻¹(int(cl(int(B))))) \subseteq f[#](f⁻¹(B)) \Rightarrow cl(f[#](f⁻¹(B))) \subset f[#](f⁻¹(B)), Therefore f[#](f⁻¹(B)) is closed in Y. This proves (ii).

Theorem: 5.8

Let f: $X \to (Y, \sigma)$ be a function. Then the following are equivalent. (i) f is β -S-continuous, (ii) for every β -open subset V of Y, f *(f -1(V)) is open in Y, (iii) cl(f(f -1(B))) \subseteq f(f -1(int(cl(int(B))))) for every α -open subset B of Y. (iv) f * (f -1(a)(int(cl(R))))) \subseteq int (f *(f -1(R))) for every

(iv) $f # (f -1(cl(int(cl(B))))) \subseteq int (f #(f -1(B)))$ for every α -closed subset B of Y.

Proof: (i) \Leftrightarrow (ii): follows from theorem 5.4. (i) \Leftrightarrow (iii) :Suppose f is β -S-continuous. Let B be a α -open set in Y. Since f is β -S-continuous, f(f -1(int(cl(int(B))))) is closed in Υ, \Rightarrow cl(f(f -1(int(cl(int(B)))))) \subseteq f(f -1(int(cl(int(B))))). Since B is α -open in Y, we see that $f(f^{-1}(B)) \subseteq f(f^{-1}(int(cl(int(B)))))$, \Rightarrow cl(f(f -1(B))) \subseteq cl(f(f -1(int(cl(int(B)))))), \Rightarrow cl(f(f -1(B))) \subseteq cl(f(f -1(int(cl(int(B)))))) \subset f(f ⁻¹(int(cl(int(B))))). This proves (iii). Conversely, suppose (iii) holds. Let B be β -closed subset in Y \Rightarrow f(f -1(int(cl(int(B))))) \subset f(f -1(B)) Since B is α -open by applying (iii) \Rightarrow cl(f(f -1(B))) \subseteq f(f -1(int(cl(int(B))))), \Rightarrow cl(f(f -1(B))) \subseteq f(f -1(int(cl(int(B))))) \subseteq f(f -1(B)) \Rightarrow cl(f(f -1(B))) \subseteq f(f -1(B)), That implies f(f -1(B)) is closed set in Y. This completes the proof for (i) \Leftrightarrow (iii). (ii) \Leftrightarrow (iv): Suppose (ii) holds. Let B be a α -closed subset of Y. Then cl(int(cl(B))) is β -open in Y. By (ii), f #(f -1(cl(int(cl(B))))) is open in Y, \Rightarrow f *(f -1(cl(int(cl(B))))) \subseteq int(f *(f -1(cl(int(cl(B)))))). Since B is a α -closed, it follows that f *(f -1(cl(int(cl(B))))) \subseteq f #(f -1(B)) \Rightarrow int(f *(f -1(cl(int(cl(B)))))) \subseteq int(f *(f -1(B))), \Rightarrow f *(f -1(cl(int(cl(B))))) \subseteq int(f *(f -1(cl(int(cl(B)))))) \subseteq int(f #(f -1(B))), we see that $f #(f -1(cl(int(cl(B))))) \subseteq int(f #(f -1(B))).$ This proves (iv). Conversely, suppose (iv) holds. Let V be β -open in Y \Rightarrow f * (f -1(V)) \subseteq f * (f -1(cl(int(cl(V))))). Since V is α -closed in Y, by using (iv), f #(f -1(cl(int(cl(V))))) \subseteq int(f *(f -1(V))), $\Rightarrow f #(f -1(V)) \subseteq f #(f -1(cl(int(cl(V))))) \subseteq int(f #(f -1(V))),$ \Rightarrow f *(f -1(V)) \subseteq int(f *(f -1(V))), Then it follows that f #(f -1(V)) is open in Y. This proves (ii).

6. CONCLUSION:

In this paper the notions of β -L-Continuity, β -M-Continuity, β -R-Continuity and β -S-Continuity of a function f: X \rightarrow Y between a topological space and a non empty set are introduced. The purpose of this paper is to introduce, β - ρ -continuity. Here we discuss their links with β -open, β -closed sets. Also we establish pasting lemmas for β -R-continuous and β -S-continuous functions and obtain some characterizations for, β - ρ -continuity. We have put forward some examples to illustrate our notions

REFERENCES

- Levine N., Semi-Open sets and Semi-Continuity in Topological Spaces, Amer. Math. Monthly, 70 (1963), 36-41.
- [2] Mashhour A.S, Abdel Monsef M.E and E.I Deeb S.N., On Pre-Continuous and Weak Pre-Continuous mappings, Proc. Math. Phys. Soc. Egypt 53 (1982), 47-53.
- [3] Navpreet singh Noorie and Rajni Bala, Some Characterizations of open, closed and continuous Mappings, *International J. Math. & Math. Sci.*, Article ID 527106, (2008),1-5.

- [4] Selvi R., Thangavelu P., and Anitha M., ρ-Continuity Between a Topological space and a Non Empty Set, where ρ ∈ {L, M, R, S}, *International Journal of Mathematical Sciences*,9(1-2)(2010), 97-104.
- [5] Stone M. H., Applications of Theory of Boolean Rings to General Topology, Trans. A.M.S, 41(3),(1937), 375-481.
- [6] Thangavelu P., Selvi R., On Characterization of ρ-Continuity where ρ ∈ {L, M, R, S}, International journal of applied mathematical analysis and applications, January – June 2012, Volume 7, page no 153-159.

[7] Njastad O., On some classes of nearly open sets, *pacific.j.Math.*, 15(1965),961-970.

[8] Andrijevic D., semi-pre-open sets, Mat. Vesnik, 38(1)(1986), 24-32.

[9] priyadarshini M., Thangavelu P., Selvi R., On pre- ρ -Continuity where $\rho \in \{L, M, R, S\}$, *International journal of science and Research*, Volume 4, Issue 4, April 2015, page no 278-283.

[10]	priyadarshini M., Selvi R., On Semi- $\rho\text{-}Continuity$ where
$\rho \in \{$	L, M, R, S}, International journal of Technical Research and
applic	ations, volume 3, Issue 3 , May 2015, page no: 221-226

JSER